Python tensorflow.python.ops.state_ops.is_variable_initialized() Examples
The following are 13
code examples of tensorflow.python.ops.state_ops.is_variable_initialized().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.state_ops
, or try the search function
.
Example #1
Source File: variables.py From lambda-packs with MIT License | 6 votes |
def initialized_value(self): """Returns the value of the initialized variable. You should use this instead of the variable itself to initialize another variable with a value that depends on the value of this variable. ```python # Initialize 'v' with a random tensor. v = tf.Variable(tf.truncated_normal([10, 40])) # Use `initialized_value` to guarantee that `v` has been # initialized before its value is used to initialize `w`. # The random values are picked only once. w = tf.Variable(v.initialized_value() * 2.0) ``` Returns: A `Tensor` holding the value of this variable after its initializer has run. """ with ops.control_dependencies(None): return control_flow_ops.cond(is_variable_initialized(self), self.read_value, lambda: self.initial_value)
Example #2
Source File: control_flow_ops_py_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testUninitializedRefIdentity(self): with self.test_session() as sess: v = gen_state_ops._variable(shape=[1], dtype=tf.float32, name="v", container="", shared_name="") inited = state_ops.is_variable_initialized(v) v_f, v_t = control_flow_ops.ref_switch(v, inited) # Both v_f and v_t are uninitialized references. However, an actual use # of the reference in the 'true' branch in the 'tf.identity' op will # not 'fire' when v is uninitialized, so this is a valid construction. # This test tests that _ref_identity allows uninitialized ref as input # so that this construction is allowed. v_f_op = gen_array_ops._ref_identity(v_f) v_t_op = gen_array_ops._ref_identity(v_t) with tf.control_dependencies([v_f_op]): assign_v = tf.assign(v, [1.0]) with tf.control_dependencies([v_t_op]): orig_v = tf.identity(v) merged_op = control_flow_ops.merge([assign_v, orig_v]) self.assertAllEqual([1.0], sess.run(merged_op.output))
Example #3
Source File: variables.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def initialized_value(self): """Returns the value of the initialized variable. You should use this instead of the variable itself to initialize another variable with a value that depends on the value of this variable. ```python # Initialize 'v' with a random tensor. v = tf.Variable(tf.truncated_normal([10, 40])) # Use `initialized_value` to guarantee that `v` has been # initialized before its value is used to initialize `w`. # The random values are picked only once. w = tf.Variable(v.initialized_value() * 2.0) ``` Returns: A `Tensor` holding the value of this variable after its initializer has run. """ with ops.control_dependencies(None): return control_flow_ops.cond(is_variable_initialized(self), self.read_value, lambda: self.initial_value)
Example #4
Source File: variables.py From lambda-packs with MIT License | 5 votes |
def is_variable_initialized(variable): """Tests if a variable has been initialized. Args: variable: A `Variable`. Returns: Returns a scalar boolean Tensor, `True` if the variable has been initialized, `False` otherwise. """ return state_ops.is_variable_initialized(variable)
Example #5
Source File: variables.py From lambda-packs with MIT License | 5 votes |
def report_uninitialized_variables(var_list=None, name="report_uninitialized_variables"): """Adds ops to list the names of uninitialized variables. When run, it returns a 1-D tensor containing the names of uninitialized variables if there are any, or an empty array if there are none. Args: var_list: List of `Variable` objects to check. Defaults to the value of `global_variables() + local_variables()` name: Optional name of the `Operation`. Returns: A 1-D tensor containing names of the uninitialized variables, or an empty 1-D tensor if there are no variables or no uninitialized variables. """ if var_list is None: var_list = global_variables() + local_variables() # Backwards compatibility for old-style variables. TODO(touts): remove. if not var_list: var_list = [] for op in ops.get_default_graph().get_operations(): if op.type in ["Variable", "VariableV2", "AutoReloadVariable"]: var_list.append(op.outputs[0]) with ops.name_scope(name): if not var_list: # Return an empty tensor so we only need to check for returned tensor # size being 0 as an indication of model ready. return array_ops.constant([], dtype=dtypes.string) else: # Get a 1-D boolean tensor listing whether each variable is initialized. variables_mask = math_ops.logical_not( array_ops.stack( [state_ops.is_variable_initialized(v) for v in var_list])) # Get a 1-D string tensor containing all the variable names. variable_names_tensor = array_ops.constant([s.op.name for s in var_list]) # Return a 1-D tensor containing all the names of uninitialized variables. return array_ops.boolean_mask(variable_names_tensor, variables_mask) # pylint: disable=protected-access
Example #6
Source File: variables.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def is_variable_initialized(variable): """Tests if a variable has been initialized. Args: variable: A `Variable`. Returns: Returns a scalar boolean Tensor, `True` if the variable has been initialized, `False` otherwise. """ return state_ops.is_variable_initialized(variable)
Example #7
Source File: variables.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def report_uninitialized_variables(var_list=None, name="report_uninitialized_variables"): """Adds ops to list the names of uninitialized variables. When run, it returns a 1-D tensor containing the names of uninitialized variables if there are any, or an empty array if there are none. Args: var_list: List of `Variable` objects to check. Defaults to the value of `global_variables() + local_variables()` name: Optional name of the `Operation`. Returns: A 1-D tensor containing names of the uninitialized variables, or an empty 1-D tensor if there are no variables or no uninitialized variables. """ if var_list is None: var_list = global_variables() + local_variables() # Backwards compatibility for old-style variables. TODO(touts): remove. if not var_list: var_list = [] for op in ops.get_default_graph().get_operations(): if op.type in ["Variable", "VariableV2", "AutoReloadVariable"]: var_list.append(op.outputs[0]) with ops.name_scope(name): if not var_list: # Return an empty tensor so we only need to check for returned tensor # size being 0 as an indication of model ready. return array_ops.constant([], dtype=dtypes.string) else: # Get a 1-D boolean tensor listing whether each variable is initialized. variables_mask = math_ops.logical_not( array_ops.stack( [state_ops.is_variable_initialized(v) for v in var_list])) # Get a 1-D string tensor containing all the variable names. variable_names_tensor = array_ops.constant([s.op.name for s in var_list]) # Return a 1-D tensor containing all the names of uninitialized variables. return array_ops.boolean_mask(variable_names_tensor, variables_mask) # pylint: disable=protected-access
Example #8
Source File: variables.py From deep_image_model with Apache License 2.0 | 5 votes |
def is_variable_initialized(variable): """Tests if a variable has been initialized. Args: variable: A `Variable`. Returns: Returns a scalar boolean Tensor, `True` if the variable has been initialized, `False` otherwise. """ return state_ops.is_variable_initialized(variable)
Example #9
Source File: variables.py From deep_image_model with Apache License 2.0 | 5 votes |
def report_uninitialized_variables(var_list=None, name="report_uninitialized_variables"): """Adds ops to list the names of uninitialized variables. When run, it returns a 1-D tensor containing the names of uninitialized variables if there are any, or an empty array if there are none. Args: var_list: List of `Variable` objects to check. Defaults to the value of `global_variables() + local_variables()` name: Optional name of the `Operation`. Returns: A 1-D tensor containing names of the uninitialized variables, or an empty 1-D tensor if there are no variables or no uninitialized variables. """ if var_list is None: var_list = global_variables() + local_variables() # Backwards compatibility for old-style variables. TODO(touts): remove. if not var_list: var_list = [] for op in ops.get_default_graph().get_operations(): if op.type in ["Variable", "AutoReloadVariable"]: var_list.append(op.outputs[0]) with ops.name_scope(name): if not var_list: # Return an empty tensor so we only need to check for returned tensor # size being 0 as an indication of model ready. return array_ops.constant([], dtype=dtypes.string) else: # Get a 1-D boolean tensor listing whether each variable is initialized. variables_mask = math_ops.logical_not(array_ops.pack( [state_ops.is_variable_initialized(v) for v in var_list])) # Get a 1-D string tensor containing all the variable names. variable_names_tensor = array_ops.constant([s.op.name for s in var_list]) # Return a 1-D tensor containing all the names of uninitialized variables. return array_ops.boolean_mask(variable_names_tensor, variables_mask) # pylint: disable=protected-access
Example #10
Source File: variables.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def is_variable_initialized(variable): """Tests if a variable has been initialized. Args: variable: A `Variable`. Returns: Returns a scalar boolean Tensor, `True` if the variable has been initialized, `False` otherwise. """ return state_ops.is_variable_initialized(variable)
Example #11
Source File: variables.py From keras-lambda with MIT License | 5 votes |
def is_variable_initialized(variable): """Tests if a variable has been initialized. Args: variable: A `Variable`. Returns: Returns a scalar boolean Tensor, `True` if the variable has been initialized, `False` otherwise. """ return state_ops.is_variable_initialized(variable)
Example #12
Source File: variables.py From keras-lambda with MIT License | 5 votes |
def report_uninitialized_variables(var_list=None, name="report_uninitialized_variables"): """Adds ops to list the names of uninitialized variables. When run, it returns a 1-D tensor containing the names of uninitialized variables if there are any, or an empty array if there are none. Args: var_list: List of `Variable` objects to check. Defaults to the value of `global_variables() + local_variables()` name: Optional name of the `Operation`. Returns: A 1-D tensor containing names of the uninitialized variables, or an empty 1-D tensor if there are no variables or no uninitialized variables. """ if var_list is None: var_list = global_variables() + local_variables() # Backwards compatibility for old-style variables. TODO(touts): remove. if not var_list: var_list = [] for op in ops.get_default_graph().get_operations(): if op.type in ["Variable", "VariableV2", "AutoReloadVariable"]: var_list.append(op.outputs[0]) with ops.name_scope(name): if not var_list: # Return an empty tensor so we only need to check for returned tensor # size being 0 as an indication of model ready. return array_ops.constant([], dtype=dtypes.string) else: # Get a 1-D boolean tensor listing whether each variable is initialized. variables_mask = math_ops.logical_not( array_ops.stack( [state_ops.is_variable_initialized(v) for v in var_list])) # Get a 1-D string tensor containing all the variable names. variable_names_tensor = array_ops.constant([s.op.name for s in var_list]) # Return a 1-D tensor containing all the names of uninitialized variables. return array_ops.boolean_mask(variable_names_tensor, variables_mask) # pylint: disable=protected-access
Example #13
Source File: variables.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def report_uninitialized_variables(var_list=None, name="report_uninitialized_variables"): """Adds ops to list the names of uninitialized variables. When run, it returns a 1-D tensor containing the names of uninitialized variables if there are any, or an empty array if there are none. Args: var_list: List of `Variable` objects to check. Defaults to the value of `global_variables() + local_variables()` name: Optional name of the `Operation`. Returns: A 1-D tensor containing names of the uninitialized variables, or an empty 1-D tensor if there are no variables or no uninitialized variables. """ if var_list is None: var_list = global_variables() + local_variables() # Backwards compatibility for old-style variables. TODO(touts): remove. if not var_list: var_list = [] for op in ops.get_default_graph().get_operations(): if op.type in ["Variable", "VariableV2", "AutoReloadVariable"]: var_list.append(op.outputs[0]) with ops.name_scope(name): # Run all operations on CPU with ops.device("/cpu:0"): if not var_list: # Return an empty tensor so we only need to check for returned tensor # size being 0 as an indication of model ready. return array_ops.constant([], dtype=dtypes.string) else: # Get a 1-D boolean tensor listing whether each variable is initialized. variables_mask = math_ops.logical_not( array_ops.stack( [state_ops.is_variable_initialized(v) for v in var_list])) # Get a 1-D string tensor containing all the variable names. variable_names_tensor = array_ops.constant( [s.op.name for s in var_list]) # Return a 1-D tensor containing all the names of # uninitialized variables. return array_ops.boolean_mask(variable_names_tensor, variables_mask) # pylint: disable=protected-access