Python sklearn.decomposition.MiniBatchSparsePCA() Examples

The following are 5 code examples of sklearn.decomposition.MiniBatchSparsePCA(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.decomposition , or try the search function .
Example #1
Source File: test_decomposition.py    From pandas-ml with BSD 3-Clause "New" or "Revised" License 7 votes vote down vote up
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.decomposition.PCA, decomposition.PCA)
        self.assertIs(df.decomposition.IncrementalPCA,
                      decomposition.IncrementalPCA)
        self.assertIs(df.decomposition.KernelPCA, decomposition.KernelPCA)
        self.assertIs(df.decomposition.FactorAnalysis,
                      decomposition.FactorAnalysis)
        self.assertIs(df.decomposition.FastICA, decomposition.FastICA)
        self.assertIs(df.decomposition.TruncatedSVD, decomposition.TruncatedSVD)
        self.assertIs(df.decomposition.NMF, decomposition.NMF)
        self.assertIs(df.decomposition.SparsePCA, decomposition.SparsePCA)
        self.assertIs(df.decomposition.MiniBatchSparsePCA,
                      decomposition.MiniBatchSparsePCA)
        self.assertIs(df.decomposition.SparseCoder, decomposition.SparseCoder)
        self.assertIs(df.decomposition.DictionaryLearning,
                      decomposition.DictionaryLearning)
        self.assertIs(df.decomposition.MiniBatchDictionaryLearning,
                      decomposition.MiniBatchDictionaryLearning)

        self.assertIs(df.decomposition.LatentDirichletAllocation,
                      decomposition.LatentDirichletAllocation) 
Example #2
Source File: test_sparse_pca.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_mini_batch_correct_shapes(norm_comp):
    rng = np.random.RandomState(0)
    X = rng.randn(12, 10)
    pca = MiniBatchSparsePCA(n_components=8, random_state=rng,
                             normalize_components=norm_comp)
    U = pca.fit_transform(X)
    assert_equal(pca.components_.shape, (8, 10))
    assert_equal(U.shape, (12, 8))
    # test overcomplete decomposition
    pca = MiniBatchSparsePCA(n_components=13, random_state=rng,
                             normalize_components=norm_comp)
    U = pca.fit_transform(X)
    assert_equal(pca.components_.shape, (13, 10))
    assert_equal(U.shape, (12, 13))


# XXX: test always skipped 
Example #3
Source File: test_sparse_pca.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def test_mini_batch_fit_transform(norm_comp):
    alpha = 1
    rng = np.random.RandomState(0)
    Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)  # wide array
    spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0,
                                   alpha=alpha,
                                   normalize_components=norm_comp).fit(Y)
    U1 = spca_lars.transform(Y)
    # Test multiple CPUs
    if sys.platform == 'win32':  # fake parallelism for win32
        import sklearn.utils._joblib.parallel as joblib_par
        _mp = joblib_par.multiprocessing
        joblib_par.multiprocessing = None
        try:
            spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha,
                                      random_state=0,
                                      normalize_components=norm_comp)
            U2 = spca.fit(Y).transform(Y)
        finally:
            joblib_par.multiprocessing = _mp
    else:  # we can efficiently use parallelism
        spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha,
                                  random_state=0,
                                  normalize_components=norm_comp)
        U2 = spca.fit(Y).transform(Y)
    assert not np.all(spca_lars.components_ == 0)
    assert_array_almost_equal(U1, U2)
    # Test that CD gives similar results
    spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha,
                                    random_state=0,
                                    normalize_components=norm_comp).fit(Y)
    assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) 
Example #4
Source File: test_sparse_pca.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_mini_batch_correct_shapes():
    rng = np.random.RandomState(0)
    X = rng.randn(12, 10)
    pca = MiniBatchSparsePCA(n_components=8, random_state=rng)
    U = pca.fit_transform(X)
    assert_equal(pca.components_.shape, (8, 10))
    assert_equal(U.shape, (12, 8))
    # test overcomplete decomposition
    pca = MiniBatchSparsePCA(n_components=13, random_state=rng)
    U = pca.fit_transform(X)
    assert_equal(pca.components_.shape, (13, 10))
    assert_equal(U.shape, (12, 13)) 
Example #5
Source File: test_sparse_pca.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_mini_batch_fit_transform():
    raise SkipTest("skipping mini_batch_fit_transform.")
    alpha = 1
    rng = np.random.RandomState(0)
    Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng)  # wide array
    spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0,
                                   alpha=alpha).fit(Y)
    U1 = spca_lars.transform(Y)
    # Test multiple CPUs
    if sys.platform == 'win32':  # fake parallelism for win32
        import sklearn.externals.joblib.parallel as joblib_par
        _mp = joblib_par.multiprocessing
        joblib_par.multiprocessing = None
        try:
            U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha,
                                    random_state=0).fit(Y).transform(Y)
        finally:
            joblib_par.multiprocessing = _mp
    else:  # we can efficiently use parallelism
        U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha,
                                random_state=0).fit(Y).transform(Y)
    assert_true(not np.all(spca_lars.components_ == 0))
    assert_array_almost_equal(U1, U2)
    # Test that CD gives similar results
    spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha,
                                    random_state=0).fit(Y)
    assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)