Python sklearn.decomposition.MiniBatchSparsePCA() Examples
The following are 5
code examples of sklearn.decomposition.MiniBatchSparsePCA().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.decomposition
, or try the search function
.
Example #1
Source File: test_decomposition.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 7 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.decomposition.PCA, decomposition.PCA) self.assertIs(df.decomposition.IncrementalPCA, decomposition.IncrementalPCA) self.assertIs(df.decomposition.KernelPCA, decomposition.KernelPCA) self.assertIs(df.decomposition.FactorAnalysis, decomposition.FactorAnalysis) self.assertIs(df.decomposition.FastICA, decomposition.FastICA) self.assertIs(df.decomposition.TruncatedSVD, decomposition.TruncatedSVD) self.assertIs(df.decomposition.NMF, decomposition.NMF) self.assertIs(df.decomposition.SparsePCA, decomposition.SparsePCA) self.assertIs(df.decomposition.MiniBatchSparsePCA, decomposition.MiniBatchSparsePCA) self.assertIs(df.decomposition.SparseCoder, decomposition.SparseCoder) self.assertIs(df.decomposition.DictionaryLearning, decomposition.DictionaryLearning) self.assertIs(df.decomposition.MiniBatchDictionaryLearning, decomposition.MiniBatchDictionaryLearning) self.assertIs(df.decomposition.LatentDirichletAllocation, decomposition.LatentDirichletAllocation)
Example #2
Source File: test_sparse_pca.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_mini_batch_correct_shapes(norm_comp): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng, normalize_components=norm_comp) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng, normalize_components=norm_comp) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) # XXX: test always skipped
Example #3
Source File: test_sparse_pca.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_mini_batch_fit_transform(norm_comp): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha, normalize_components=norm_comp).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.utils._joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0, normalize_components=norm_comp) U2 = spca.fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism spca = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0, normalize_components=norm_comp) U2 = spca.fit(Y).transform(Y) assert not np.all(spca_lars.components_ == 0) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0, normalize_components=norm_comp).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
Example #4
Source File: test_sparse_pca.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13))
Example #5
Source File: test_sparse_pca.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)