Python tensorflow.contrib.tpu.python.tpu.tpu_config.RunConfig() Examples

The following are 30 code examples of tensorflow.contrib.tpu.python.tpu.tpu_config.RunConfig(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.contrib.tpu.python.tpu.tpu_config , or try the search function .
Example #1
Source File: model_lib_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def test_create_estimator_and_inputs(self):
    """Tests that Estimator and input function are constructed correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(20, train_steps)
    self.assertIn('train_input_fn', train_and_eval_dict)
    self.assertIn('eval_input_fns', train_and_eval_dict)
    self.assertIn('eval_on_train_input_fn', train_and_eval_dict) 
Example #2
Source File: model_lib_test.py    From BMW-TensorFlow-Training-GUI with Apache License 2.0 6 votes vote down vote up
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    eval_steps = 10
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        eval_steps=eval_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps)
    self.assertEqual(10, eval_steps) 
Example #3
Source File: model_lib_test.py    From BMW-TensorFlow-Training-GUI with Apache License 2.0 6 votes vote down vote up
def test_create_estimator_with_default_train_eval_steps(self):
    """Tests that number of train/eval defaults to config values."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    config_train_steps = configs['train_config'].num_steps
    config_eval_steps = configs['eval_config'].num_examples
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config, hparams, pipeline_config_path)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']

    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(config_train_steps, train_steps)
    self.assertEqual(config_eval_steps, eval_steps) 
Example #4
Source File: model_lib_test.py    From BMW-TensorFlow-Training-GUI with Apache License 2.0 6 votes vote down vote up
def test_create_estimator_and_inputs(self):
    """Tests that Estimator and input function are constructed correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    eval_steps = 10
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        eval_steps=eval_steps)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']
    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(20, train_steps)
    self.assertEqual(10, eval_steps)
    self.assertIn('train_input_fn', train_and_eval_dict)
    self.assertIn('eval_input_fn', train_and_eval_dict)
    self.assertIn('eval_on_train_input_fn', train_and_eval_dict) 
Example #5
Source File: model_lib_test.py    From ros_tensorflow with Apache License 2.0 6 votes vote down vote up
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    eval_steps = 10
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        eval_steps=eval_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps)
    self.assertEqual(10, eval_steps) 
Example #6
Source File: model_lib_test.py    From ros_tensorflow with Apache License 2.0 6 votes vote down vote up
def test_create_estimator_with_default_train_eval_steps(self):
    """Tests that number of train/eval defaults to config values."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    config_train_steps = configs['train_config'].num_steps
    config_eval_steps = configs['eval_config'].num_examples
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config, hparams, pipeline_config_path)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']

    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(config_train_steps, train_steps)
    self.assertEqual(config_eval_steps, eval_steps) 
Example #7
Source File: model_lib_test.py    From ros_tensorflow with Apache License 2.0 6 votes vote down vote up
def test_create_estimator_and_inputs(self):
    """Tests that Estimator and input function are constructed correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    eval_steps = 10
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        eval_steps=eval_steps)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']
    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(20, train_steps)
    self.assertEqual(10, eval_steps)
    self.assertIn('train_input_fn', train_and_eval_dict)
    self.assertIn('eval_input_fn', train_and_eval_dict)
    self.assertIn('eval_on_train_input_fn', train_and_eval_dict) 
Example #8
Source File: model_lib_test.py    From MAX-Object-Detector with Apache License 2.0 6 votes vote down vote up
def test_create_estimator_and_inputs(self):
    """Tests that Estimator and input function are constructed correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(20, train_steps)
    self.assertIn('train_input_fn', train_and_eval_dict)
    self.assertIn('eval_input_fns', train_and_eval_dict)
    self.assertIn('eval_on_train_input_fn', train_and_eval_dict) 
Example #9
Source File: model_lib_test.py    From MAX-Object-Detector with Apache License 2.0 6 votes vote down vote up
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps) 
Example #10
Source File: model_lib_test.py    From Gun-Detector with Apache License 2.0 6 votes vote down vote up
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    eval_steps = 10
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        eval_steps=eval_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps)
    self.assertEqual(10, eval_steps) 
Example #11
Source File: model_lib_test.py    From Gun-Detector with Apache License 2.0 6 votes vote down vote up
def test_create_estimator_with_default_train_eval_steps(self):
    """Tests that number of train/eval defaults to config values."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    config_train_steps = configs['train_config'].num_steps
    config_eval_steps = configs['eval_config'].num_examples
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config, hparams, pipeline_config_path)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']

    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(config_train_steps, train_steps)
    self.assertEqual(config_eval_steps, eval_steps) 
Example #12
Source File: model_lib_test.py    From Gun-Detector with Apache License 2.0 6 votes vote down vote up
def test_create_estimator_and_inputs(self):
    """Tests that Estimator and input function are constructed correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    eval_steps = 10
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        eval_steps=eval_steps)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']
    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(20, train_steps)
    self.assertEqual(10, eval_steps)
    self.assertIn('train_input_fn', train_and_eval_dict)
    self.assertIn('eval_input_fn', train_and_eval_dict)
    self.assertIn('eval_on_train_input_fn', train_and_eval_dict) 
Example #13
Source File: model_lib_test.py    From g-tensorflow-models with Apache License 2.0 6 votes vote down vote up
def test_create_estimator_and_inputs(self):
    """Tests that Estimator and input function are constructed correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(20, train_steps)
    self.assertIn('train_input_fn', train_and_eval_dict)
    self.assertIn('eval_input_fns', train_and_eval_dict)
    self.assertIn('eval_on_train_input_fn', train_and_eval_dict) 
Example #14
Source File: model_lib_test.py    From g-tensorflow-models with Apache License 2.0 6 votes vote down vote up
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps) 
Example #15
Source File: model_lib_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    eval_steps = 10
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        eval_steps=eval_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps)
    self.assertEqual(10, eval_steps) 
Example #16
Source File: model_lib_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps) 
Example #17
Source File: model_lib_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def test_create_estimator_with_default_train_eval_steps(self):
    """Tests that number of train/eval defaults to config values."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    config_train_steps = configs['train_config'].num_steps
    config_eval_steps = configs['eval_config'].num_examples
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config, hparams, pipeline_config_path)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']

    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(config_train_steps, train_steps)
    self.assertEqual(config_eval_steps, eval_steps) 
Example #18
Source File: model_lib_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def test_create_estimator_and_inputs(self):
    """Tests that Estimator and input function are constructed correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    eval_steps = 10
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        eval_steps=eval_steps)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    eval_steps = train_and_eval_dict['eval_steps']
    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(20, train_steps)
    self.assertEqual(10, eval_steps)
    self.assertIn('train_input_fn', train_and_eval_dict)
    self.assertIn('eval_input_fn', train_and_eval_dict)
    self.assertIn('eval_on_train_input_fn', train_and_eval_dict) 
Example #19
Source File: model_lib_test.py    From multilabel-image-classification-tensorflow with MIT License 6 votes vote down vote up
def test_create_estimator_and_inputs(self):
    """Tests that Estimator and input function are constructed correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']
    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(20, train_steps)
    self.assertIn('train_input_fn', train_and_eval_dict)
    self.assertIn('eval_input_fns', train_and_eval_dict)
    self.assertIn('eval_on_train_input_fn', train_and_eval_dict) 
Example #20
Source File: model_lib_test.py    From multilabel-image-classification-tensorflow with MIT License 6 votes vote down vote up
def test_create_tpu_estimator_and_inputs(self):
    """Tests that number of train/eval defaults to config values."""

    run_config = tpu_config.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps,
        use_tpu_estimator=True)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']

    self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
    self.assertEqual(20, train_steps) 
Example #21
Source File: dual_net.py    From training with Apache License 2.0 5 votes vote down vote up
def _get_nontpu_estimator():
    session_config = tf.ConfigProto()
    session_config.gpu_options.allow_growth = True
    run_config = tf.estimator.RunConfig(
        save_summary_steps=FLAGS.summary_steps,
        keep_checkpoint_max=FLAGS.keep_checkpoint_max,
        session_config=session_config)
    return tf.estimator.Estimator(
        model_fn,
        model_dir=FLAGS.work_dir,
        config=run_config,
        params=FLAGS.flag_values_dict()) 
Example #22
Source File: dual_net.py    From training with Apache License 2.0 5 votes vote down vote up
def _get_tpu_estimator():
    tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=None, project=None)
    tpu_grpc_url = tpu_cluster_resolver.get_master()

    run_config = contrib_tpu_python_tpu_tpu_config.RunConfig(
        master=tpu_grpc_url,
        evaluation_master=tpu_grpc_url,
        model_dir=FLAGS.work_dir,
        save_checkpoints_steps=max(1000, FLAGS.iterations_per_loop),
        save_summary_steps=FLAGS.summary_steps,
        keep_checkpoint_max=FLAGS.keep_checkpoint_max,
        session_config=tf.ConfigProto(
            allow_soft_placement=True, log_device_placement=True),
        tpu_config=contrib_tpu_python_tpu_tpu_config.TPUConfig(
            iterations_per_loop=FLAGS.iterations_per_loop,
            num_shards=FLAGS.num_tpu_cores,
            per_host_input_for_training=contrib_tpu_python_tpu_tpu_config.InputPipelineConfig.PER_HOST_V2))

    return contrib_tpu_python_tpu_tpu_estimator.TPUEstimator(
        use_tpu=FLAGS.use_tpu,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=FLAGS.train_batch_size * FLAGS.num_tpu_cores,
        eval_batch_size=FLAGS.train_batch_size * FLAGS.num_tpu_cores,
        params=FLAGS.flag_values_dict()) 
Example #23
Source File: train_test.py    From rigl with Apache License 2.0 5 votes vote down vote up
def testTrainingPipeline(self, training_method):
    output_directory = '/tmp/'

    g = tf.Graph()
    with g.as_default():

      dataset = self._retrieve_data(is_training=False, data_dir=False)

      FLAGS.transpose_input = False
      FLAGS.use_tpu = False
      FLAGS.mode = 'train'
      FLAGS.mask_init_method = 'random'
      FLAGS.precision = 'float32'
      FLAGS.train_steps = 1
      FLAGS.train_batch_size = 1
      FLAGS.eval_batch_size = 1
      FLAGS.steps_per_eval = 1
      FLAGS.model_architecture = 'resnet'

      params = {}
      params['output_dir'] = output_directory
      params['training_method'] = training_method
      params['use_tpu'] = False
      set_lr_schedule()

      run_config = tpu_config.RunConfig(
          master=None,
          model_dir=None,
          save_checkpoints_steps=1,
          tpu_config=tpu_config.TPUConfig(iterations_per_loop=1, num_shards=1))

      classifier = tpu_estimator.TPUEstimator(
          use_tpu=False,
          model_fn=resnet_model_fn_w_pruning,
          params=params,
          config=run_config,
          train_batch_size=1,
          eval_batch_size=1)

      classifier.train(input_fn=dataset.input_fn, max_steps=1) 
Example #24
Source File: model_lib_test.py    From multilabel-image-classification-tensorflow with MIT License 5 votes vote down vote up
def test_create_train_and_eval_specs(self):
    """Tests that `TrainSpec` and `EvalSpec` is created correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps)
    train_input_fn = train_and_eval_dict['train_input_fn']
    eval_input_fns = train_and_eval_dict['eval_input_fns']
    eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
    predict_input_fn = train_and_eval_dict['predict_input_fn']
    train_steps = train_and_eval_dict['train_steps']

    train_spec, eval_specs = model_lib.create_train_and_eval_specs(
        train_input_fn,
        eval_input_fns,
        eval_on_train_input_fn,
        predict_input_fn,
        train_steps,
        eval_on_train_data=True,
        final_exporter_name='exporter',
        eval_spec_names=['holdout'])
    self.assertEqual(train_steps, train_spec.max_steps)
    self.assertEqual(2, len(eval_specs))
    self.assertEqual(None, eval_specs[0].steps)
    self.assertEqual('holdout', eval_specs[0].name)
    self.assertEqual('exporter', eval_specs[0].exporters[0].name)
    self.assertEqual(None, eval_specs[1].steps)
    self.assertEqual('eval_on_train', eval_specs[1].name) 
Example #25
Source File: tpu_estimator.py    From xlnet with Apache License 2.0 5 votes vote down vote up
def export_estimator_savedmodel(estimator,
                                export_dir_base,
                                serving_input_receiver_fn,
                                assets_extra=None,
                                as_text=False,
                                checkpoint_path=None,
                                strip_default_attrs=False):
  """Export `Estimator` trained model for TPU inference.

  Args:
    estimator: `Estimator` with which model has been trained.
    export_dir_base: A string containing a directory in which to create
      timestamped subdirectories containing exported SavedModels.
    serving_input_receiver_fn: A function that takes no argument and returns a
      `ServingInputReceiver` or `TensorServingInputReceiver`.
    assets_extra: A dict specifying how to populate the assets.extra directory
      within the exported SavedModel, or `None` if no extra assets are needed.
    as_text: whether to write the SavedModel proto in text format.
    checkpoint_path: The checkpoint path to export.  If `None` (the default),
      the most recent checkpoint found within the model directory is chosen.
    strip_default_attrs: Boolean. If `True`, default-valued attributes will be
      removed from the NodeDefs.

  Returns:
    The string path to the exported directory.
  """
  # `TPUEstimator` requires `tpu_config.RunConfig`, so we cannot use
  # `estimator.config`.
  config = tpu_config.RunConfig(model_dir=estimator.model_dir)
  est = TPUEstimator(
      estimator._model_fn,  # pylint: disable=protected-access
      config=config,
      params=estimator.params,
      use_tpu=True,
      train_batch_size=2048,  # Does not matter.
      eval_batch_size=2048,  # Does not matter.
  )
  return est.export_savedmodel(export_dir_base, serving_input_receiver_fn,
                               assets_extra, as_text, checkpoint_path,
                               strip_default_attrs) 
Example #26
Source File: model_lib_test.py    From multilabel-image-classification-tensorflow with MIT License 5 votes vote down vote up
def test_create_estimator_with_default_train_eval_steps(self):
    """Tests that number of train/eval defaults to config values."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    config_train_steps = configs['train_config'].num_steps
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config, hparams, pipeline_config_path)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']

    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(config_train_steps, train_steps) 
Example #27
Source File: model_lib_test.py    From MAX-Object-Detector with Apache License 2.0 5 votes vote down vote up
def test_create_estimator_with_default_train_eval_steps(self):
    """Tests that number of train/eval defaults to config values."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    config_train_steps = configs['train_config'].num_steps
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config, hparams, pipeline_config_path)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']

    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(config_train_steps, train_steps) 
Example #28
Source File: model_lib_test.py    From MAX-Object-Detector with Apache License 2.0 5 votes vote down vote up
def test_create_train_and_eval_specs(self):
    """Tests that `TrainSpec` and `EvalSpec` is created correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps)
    train_input_fn = train_and_eval_dict['train_input_fn']
    eval_input_fns = train_and_eval_dict['eval_input_fns']
    eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
    predict_input_fn = train_and_eval_dict['predict_input_fn']
    train_steps = train_and_eval_dict['train_steps']

    train_spec, eval_specs = model_lib.create_train_and_eval_specs(
        train_input_fn,
        eval_input_fns,
        eval_on_train_input_fn,
        predict_input_fn,
        train_steps,
        eval_on_train_data=True,
        final_exporter_name='exporter',
        eval_spec_names=['holdout'])
    self.assertEqual(train_steps, train_spec.max_steps)
    self.assertEqual(2, len(eval_specs))
    self.assertEqual(None, eval_specs[0].steps)
    self.assertEqual('holdout', eval_specs[0].name)
    self.assertEqual('exporter', eval_specs[0].exporters[0].name)
    self.assertEqual(None, eval_specs[1].steps)
    self.assertEqual('eval_on_train', eval_specs[1].name) 
Example #29
Source File: model_lib_test.py    From g-tensorflow-models with Apache License 2.0 5 votes vote down vote up
def test_create_train_and_eval_specs(self):
    """Tests that `TrainSpec` and `EvalSpec` is created correctly."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    train_steps = 20
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config,
        hparams,
        pipeline_config_path,
        train_steps=train_steps)
    train_input_fn = train_and_eval_dict['train_input_fn']
    eval_input_fns = train_and_eval_dict['eval_input_fns']
    eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
    predict_input_fn = train_and_eval_dict['predict_input_fn']
    train_steps = train_and_eval_dict['train_steps']

    train_spec, eval_specs = model_lib.create_train_and_eval_specs(
        train_input_fn,
        eval_input_fns,
        eval_on_train_input_fn,
        predict_input_fn,
        train_steps,
        eval_on_train_data=True,
        final_exporter_name='exporter',
        eval_spec_names=['holdout'])
    self.assertEqual(train_steps, train_spec.max_steps)
    self.assertEqual(2, len(eval_specs))
    self.assertEqual(None, eval_specs[0].steps)
    self.assertEqual('holdout', eval_specs[0].name)
    self.assertEqual('exporter', eval_specs[0].exporters[0].name)
    self.assertEqual(None, eval_specs[1].steps)
    self.assertEqual('eval_on_train', eval_specs[1].name) 
Example #30
Source File: model_lib_test.py    From g-tensorflow-models with Apache License 2.0 5 votes vote down vote up
def test_create_estimator_with_default_train_eval_steps(self):
    """Tests that number of train/eval defaults to config values."""
    run_config = tf.estimator.RunConfig()
    hparams = model_hparams.create_hparams(
        hparams_overrides='load_pretrained=false')
    pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
    configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
    config_train_steps = configs['train_config'].num_steps
    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config, hparams, pipeline_config_path)
    estimator = train_and_eval_dict['estimator']
    train_steps = train_and_eval_dict['train_steps']

    self.assertIsInstance(estimator, tf.estimator.Estimator)
    self.assertEqual(config_train_steps, train_steps)