Python keras.utils.get_file() Examples
The following are 30
code examples of keras.utils.get_file().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.utils
, or try the search function
.
Example #1
Source File: resnet.py From CameraRadarFusionNet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. """ resnet_filename = 'ResNet-{}-model.keras.h5' resnet_resource = 'https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}'.format(resnet_filename) depth = int(self.backbone.replace('resnet', '')) filename = resnet_filename.format(depth) resource = resnet_resource.format(depth) if depth == 50: checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319' elif depth == 101: checksum = '05dc86924389e5b401a9ea0348a3213c' elif depth == 152: checksum = '6ee11ef2b135592f8031058820bb9e71' return get_file( filename, resource, cache_subdir='models', md5_hash=checksum )
Example #2
Source File: densenet.py From keras-m2det with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #3
Source File: resnet.py From keras-m2det with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. """ resnet_filename = 'ResNet-{}-model.keras.h5' resnet_resource = 'https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}'.format(resnet_filename) depth = int(self.backbone.replace('resnet', '')) filename = resnet_filename.format(depth) resource = resnet_resource.format(depth) if depth == 50: checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319' elif depth == 101: checksum = '05dc86924389e5b401a9ea0348a3213c' elif depth == 152: checksum = '6ee11ef2b135592f8031058820bb9e71' return get_file( filename, resource, cache_subdir='models', md5_hash=checksum )
Example #4
Source File: vgg.py From keras-m2det with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. Weights can be downloaded at https://github.com/fizyr/keras-models/releases . """ if self.backbone == 'vgg16': resource = keras.applications.vgg16.vgg16.WEIGHTS_PATH_NO_TOP checksum = '6d6bbae143d832006294945121d1f1fc' elif self.backbone == 'vgg19': resource = keras.applications.vgg19.vgg19.WEIGHTS_PATH_NO_TOP checksum = '253f8cb515780f3b799900260a226db6' else: raise ValueError("Backbone '{}' not recognized.".format(self.backbone)) return get_file( '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(self.backbone), resource, cache_subdir='models', file_hash=checksum )
Example #5
Source File: resnet.py From RetinaNet with MIT License | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. """ resnet_filename = 'ResNet-{}-model.keras.h5' resnet_resource = 'https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}'.format(resnet_filename) depth = int(self.backbone.replace('resnet', '')) filename = resnet_filename.format(depth) resource = resnet_resource.format(depth) if depth == 50: checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319' elif depth == 101: checksum = '05dc86924389e5b401a9ea0348a3213c' elif depth == 152: checksum = '6ee11ef2b135592f8031058820bb9e71' return get_file( filename, resource, cache_subdir='models', md5_hash=checksum )
Example #6
Source File: models.py From pretrained.ml with MIT License | 6 votes |
def __init__(self): logger.info('Loading Deeplab') local_path = os.path.join(config.WEIGHT_PATH, config.DEEPLAB_FILENAME) self.weights_path = get_file(os.path.abspath(local_path), config.DEEPLAB_URL, cache_subdir='models') self.graph = tf.Graph() with self.graph.as_default(): self.image_placeholder = tf.placeholder(tf.float32, shape=(None, None, None, 3)) self.net = DeepLabResNetModel({'data': self.image_placeholder}, is_training=False, num_classes=self.NUM_CLASSES) restore_var = tf.global_variables() # Set up TF session and initialize variables. config_tf = tf.ConfigProto() config_tf.gpu_options.allow_growth = True self.sess = tf.Session(config=config_tf) init = tf.global_variables_initializer() self.sess.run(init) # Load weights. loader = tf.train.Saver(var_list=restore_var) loader.restore(self.sess, self.weights_path)
Example #7
Source File: densenet.py From keras-retinanet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #8
Source File: resnet.py From keras-retinanet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. """ resnet_filename = 'ResNet-{}-model.keras.h5' resnet_resource = 'https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}'.format(resnet_filename) depth = int(self.backbone.replace('resnet', '')) filename = resnet_filename.format(depth) resource = resnet_resource.format(depth) if depth == 50: checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319' elif depth == 101: checksum = '05dc86924389e5b401a9ea0348a3213c' elif depth == 152: checksum = '6ee11ef2b135592f8031058820bb9e71' return get_file( filename, resource, cache_subdir='models', md5_hash=checksum )
Example #9
Source File: vgg.py From keras-retinanet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. Weights can be downloaded at https://github.com/fizyr/keras-models/releases . """ if self.backbone == 'vgg16': resource = keras.applications.vgg16.vgg16.WEIGHTS_PATH_NO_TOP checksum = '6d6bbae143d832006294945121d1f1fc' elif self.backbone == 'vgg19': resource = keras.applications.vgg19.vgg19.WEIGHTS_PATH_NO_TOP checksum = '253f8cb515780f3b799900260a226db6' else: raise ValueError("Backbone '{}' not recognized.".format(self.backbone)) return get_file( '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(self.backbone), resource, cache_subdir='models', file_hash=checksum )
Example #10
Source File: unets.py From dsb2018_topcoders with MIT License | 6 votes |
def download_resnet_imagenet(v): v = int(v.replace('resnet', '')) filename = resnet_filename.format(v) resource = resnet_resource.format(v) if v == 50: checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319' elif v == 101: checksum = '05dc86924389e5b401a9ea0348a3213c' elif v == 152: checksum = '6ee11ef2b135592f8031058820bb9e71' return get_file( filename, resource, cache_subdir='models', md5_hash=checksum )
Example #11
Source File: utils.py From dfc2019 with MIT License | 6 votes |
def load_model_weights(weights_collection, model, dataset, classes, include_top): weights = find_weights(weights_collection, model.name, dataset, include_top) if weights: weights = weights[0] if include_top and weights['classes'] != classes: raise ValueError('If using `weights` and `include_top`' ' as true, `classes` should be {}'.format(weights['classes'])) weights_path = get_file(weights['name'], weights['url'], cache_subdir='models', md5_hash=weights['md5']) model.load_weights(weights_path) else: raise ValueError('There is no weights for such configuration: ' + 'model = {}, dataset = {}, '.format(model.name, dataset) + 'classes = {}, include_top = {}.'.format(classes, include_top))
Example #12
Source File: densenet.py From CameraRadarFusionNet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #13
Source File: efficientnet.py From CameraRadarFusionNet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. Weights can be downloaded at https://github.com/fizyr/keras-models/releases . """ if self.backbone == 'vgg16': resource = keras.applications.vgg16.vgg16.WEIGHTS_PATH_NO_TOP checksum = '6d6bbae143d832006294945121d1f1fc' elif self.backbone == 'vgg19': resource = keras.applications.vgg19.vgg19.WEIGHTS_PATH_NO_TOP checksum = '253f8cb515780f3b799900260a226db6' else: raise ValueError("Backbone '{}' not recognized.".format(self.backbone)) return get_file( '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(self.backbone), resource, cache_subdir='models', file_hash=checksum )
Example #14
Source File: efficientnet.py From EfficientUnet with MIT License | 6 votes |
def get_model_by_name(model_name, input_shape, classes=1000, pretrained=False): """Get an EfficientNet model by its name. """ blocks_args, global_params = get_efficientnet_params(model_name, override_params={'num_classes': classes}) model = _efficientnet(input_shape, blocks_args, global_params) try: if pretrained: weights = IMAGENET_WEIGHTS[model_name] weights_path = get_file( weights['name'], weights['url'], cache_subdir='models', md5_hash=weights['md5'], ) model.load_weights(weights_path) except KeyError as e: print("NOTE: Currently model {} doesn't have pretrained weights, therefore a model with randomly initialized" " weights is returned.".format(e)) return model
Example #15
Source File: vgg.py From CameraRadarFusionNet with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. Weights can be downloaded at https://github.com/fizyr/keras-models/releases . """ if self.backbone == 'vgg16': resource = keras.applications.vgg16.vgg16.WEIGHTS_PATH_NO_TOP checksum = '6d6bbae143d832006294945121d1f1fc' elif 'vgg-max' in self.backbone: resource = keras.applications.vgg16.vgg16.WEIGHTS_PATH_NO_TOP checksum = '6d6bbae143d832006294945121d1f1fc' elif self.backbone == 'vgg19': resource = keras.applications.vgg19.vgg19.WEIGHTS_PATH_NO_TOP checksum = '253f8cb515780f3b799900260a226db6' else: raise ValueError("Backbone '{}' not recognized.".format(self.backbone)) return get_file( '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(self.backbone), resource, cache_subdir='models', file_hash=checksum )
Example #16
Source File: utils.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 6 votes |
def load_model_weights(weights_collection, model, dataset, classes, include_top): weights = find_weights(weights_collection, model.name, dataset, include_top) if weights: weights = weights[0] if include_top and weights['classes'] != classes: raise ValueError('If using `weights` and `include_top`' ' as true, `classes` should be {}'.format(weights['classes'])) weights_path = get_file(weights['name'], weights['url'], cache_subdir='/project/backbones_weights', md5_hash=weights['md5']) model.load_weights(weights_path) else: raise ValueError('There is no weights for such configuration: ' + 'model = {}, dataset = {}, '.format(model.name, dataset) + 'classes = {}, include_top = {}.'.format(classes, include_top))
Example #17
Source File: vgg.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. Weights can be downloaded at https://github.com/fizyr/keras-mod'\ 'els/releases . """ if self.backbone == 'vgg16': resource = keras.applications.vgg16.WEIGHTS_PATH_NO_TOP checksum = '6d6bbae143d832006294945121d1f1fc' elif self.backbone == 'vgg19': resource = keras.applications.vgg19.WEIGHTS_PATH_NO_TOP checksum = '253f8cb515780f3b799900260a226db6' else: raise ValueError( "Backbone '{}' not recognized.".format( self.backbone)) return get_file( '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format( self.backbone), resource, cache_subdir='models', file_hash=checksum )
Example #18
Source File: resnet.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. """ resnet_filename = 'ResNet-{}-model.keras.h5' resnet_resource = 'https://github.com/fizyr/keras-models'\ '/releases/download/v0.0.1/{}'.format( resnet_filename) depth = int(self.backbone.replace('resnet', '')) filename = resnet_filename.format(depth) resource = resnet_resource.format(depth) if depth == 50: checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319' elif depth == 101: checksum = '05dc86924389e5b401a9ea0348a3213c' elif depth == 152: checksum = '6ee11ef2b135592f8031058820bb9e71' return get_file( filename, resource, cache_subdir='models', md5_hash=checksum )
Example #19
Source File: densenet.py From kaggle-rsna18 with MIT License | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #20
Source File: resnet.py From kaggle-rsna18 with MIT License | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. """ resnet_filename = 'ResNet-{}-model.keras.h5' resnet_resource = 'https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}'.format(resnet_filename) depth = int(self.backbone.replace('resnet', '')) filename = resnet_filename.format(depth) resource = resnet_resource.format(depth) if depth == 50: checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319' elif depth == 101: checksum = '05dc86924389e5b401a9ea0348a3213c' elif depth == 152: checksum = '6ee11ef2b135592f8031058820bb9e71' return get_file( filename, resource, cache_subdir='models', md5_hash=checksum )
Example #21
Source File: vgg.py From kaggle-rsna18 with MIT License | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. Weights can be downloaded at https://github.com/fizyr/keras-models/releases . """ if self.backbone == 'vgg16': resource = keras.applications.vgg16.WEIGHTS_PATH_NO_TOP checksum = '6d6bbae143d832006294945121d1f1fc' elif self.backbone == 'vgg19': resource = keras.applications.vgg19.WEIGHTS_PATH_NO_TOP checksum = '253f8cb515780f3b799900260a226db6' else: raise ValueError("Backbone '{}' not recognized.".format(self.backbone)) return get_file( '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(self.backbone), resource, cache_subdir='models', file_hash=checksum )
Example #22
Source File: mobilenetv2.py From kaggle-rsna18 with MIT License | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format mobilenet{rows}_{alpha} where rows is the imagenet shape dimension and 'alpha' controls the width of the network. For more info check the explanation from the keras mobilenet script itself. """ alpha = float(self.backbone.split('_')[1]) rows = int(self.backbone.split('_')[0].replace('mobilenet', '')) # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_last" format ' 'are not available.') BASE_WEIGHT_PATH = 'https://github.com/JonathanCMitchell/mobilenet_v2_keras/releases/download/v1.1/' model_name = 'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_{}_{}_no_top.h5'.format(alpha, rows) weights_url = BASE_WEIGHT_PATH + model_name weights_path = get_file(model_name, weights_url, cache_subdir='models') return weights_path
Example #23
Source File: densenet.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_ kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications /densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/'\ 'download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError( 'Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #24
Source File: densenet.py From DeepForest with MIT License | 6 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop where backbone is the densenet + number of layers (e.g. densenet121). For more info check the explanation from the keras densenet script itself: https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py """ origin = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/' file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5' # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_first" format are not available.') weights_url = origin + file_name.format(self.backbone) return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models')
Example #25
Source File: resnet.py From DeepForest with MIT License | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. """ resnet_filename = 'ResNet-{}-model.keras.h5' resnet_resource = 'https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}'.format(resnet_filename) depth = int(self.backbone.replace('resnet', '')) filename = resnet_filename.format(depth) resource = resnet_resource.format(depth) if depth == 50: checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319' elif depth == 101: checksum = '05dc86924389e5b401a9ea0348a3213c' elif depth == 152: checksum = '6ee11ef2b135592f8031058820bb9e71' return get_file( filename, resource, cache_subdir='models', md5_hash=checksum )
Example #26
Source File: vgg.py From DeepForest with MIT License | 6 votes |
def download_imagenet(self): """ Downloads ImageNet weights and returns path to weights file. Weights can be downloaded at https://github.com/fizyr/keras-models/releases . """ if self.backbone == 'vgg16': resource = keras.applications.vgg16.vgg16.WEIGHTS_PATH_NO_TOP checksum = '6d6bbae143d832006294945121d1f1fc' elif self.backbone == 'vgg19': resource = keras.applications.vgg19.vgg19.WEIGHTS_PATH_NO_TOP checksum = '253f8cb515780f3b799900260a226db6' else: raise ValueError("Backbone '{}' not recognized.".format(self.backbone)) return get_file( '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(self.backbone), resource, cache_subdir='models', file_hash=checksum )
Example #27
Source File: mobilenet.py From perceptron-benchmark with Apache License 2.0 | 5 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format mobilenet{rows}_{alpha} where rows is the imagenet shape dimension and 'alpha' controls the width of the network. For more info check the explanation from the keras mobilenet script itself. """ alpha = float(self.backbone.split('_')[1]) rows = int(self.backbone.split('_')[0].replace('mobilenet', '')) # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_last" format ' 'are not available.') if alpha == 1.0: alpha_text = '1_0' elif alpha == 0.75: alpha_text = '7_5' elif alpha == 0.50: alpha_text = '5_0' else: alpha_text = '2_5' model_name = 'mobilenet_{}_{}_tf_no_top.h5'.format(alpha_text, rows) weights_url = mobilenet.mobilenet.BASE_WEIGHT_PATH + model_name weights_path = get_file(model_name, weights_url, cache_subdir='models') return weights_path
Example #28
Source File: face.py From dvt with GNU General Public License v2.0 | 5 votes |
def __init__(self): from keras.models import load_model from keras.utils import get_file from keras import backend as K mloc = get_file( "vggface2-resnet50.h5", origin="https://github.com/distant-viewing/dvt/" "releases/download/0.0.1/" "vggface2-resnet50.h5", ) self._model = load_model(mloc) self._iformat = K.image_data_format()
Example #29
Source File: mobilenet.py From keras-m2det with Apache License 2.0 | 5 votes |
def download_imagenet(self): """ Download pre-trained weights for the specified backbone name. This name is in the format mobilenet{rows}_{alpha} where rows is the imagenet shape dimension and 'alpha' controls the width of the network. For more info check the explanation from the keras mobilenet script itself. """ alpha = float(self.backbone.split('_')[1]) rows = int(self.backbone.split('_')[0].replace('mobilenet', '')) # load weights if keras.backend.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_last" format ' 'are not available.') if alpha == 1.0: alpha_text = '1_0' elif alpha == 0.75: alpha_text = '7_5' elif alpha == 0.50: alpha_text = '5_0' else: alpha_text = '2_5' model_name = 'mobilenet_{}_{}_tf_no_top.h5'.format(alpha_text, rows) weights_url = mobilenet.mobilenet.BASE_WEIGHT_PATH + model_name weights_path = get_file(model_name, weights_url, cache_subdir='models') return weights_path
Example #30
Source File: utils.py From indic_tagger with Apache License 2.0 | 5 votes |
def download(url): """Download a trained weights, config and preprocessor. Args: url (str): target url. """ filepath = get_file(fname='tmp.zip', origin=url, extract=True) base_dir = os.path.dirname(filepath) weights_file = os.path.join(base_dir, 'weights.h5') params_file = os.path.join(base_dir, 'params.json') preprocessor_file = os.path.join(base_dir, 'preprocessor.pickle') return weights_file, params_file, preprocessor_file