Python object_detection.protos.hyperparams_pb2.Hyperparams() Examples

The following are 30 code examples of object_detection.protos.hyperparams_pb2.Hyperparams(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module object_detection.protos.hyperparams_pb2 , or try the search function .
Example #1
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_variance_in_range_with_variance_scaling_initializer_uniform(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        variance_scaling_initializer {
          factor: 2.0
          mode: FAN_IN
          uniform: true
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]
    initializer = conv_scope_arguments['weights_initializer']
    self._assert_variance_in_range(initializer, shape=[100, 40],
                                   variance=2. / 100.) 
Example #2
Source File: box_predictor_builder_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def test_build_default_mask_rcnn_box_predictor(self):
    box_predictor_proto = box_predictor_pb2.BoxPredictor()
    box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = (
        hyperparams_pb2.Hyperparams.FC)
    box_predictor = box_predictor_builder.build(
        argscope_fn=mock.Mock(return_value='arg_scope'),
        box_predictor_config=box_predictor_proto,
        is_training=True,
        num_classes=90)
    self.assertFalse(box_predictor._use_dropout)
    self.assertAlmostEqual(box_predictor._dropout_keep_prob, 0.5)
    self.assertEqual(box_predictor.num_classes, 90)
    self.assertTrue(box_predictor._is_training)
    self.assertEqual(box_predictor._box_code_size, 4)
    self.assertFalse(box_predictor._predict_instance_masks)
    self.assertFalse(box_predictor._predict_keypoints) 
Example #3
Source File: hyperparams_builder.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def _build_activation_fn(activation_fn):
  """Builds a callable activation from config.

  Args:
    activation_fn: hyperparams_pb2.Hyperparams.activation

  Returns:
    Callable activation function.

  Raises:
    ValueError: On unknown activation function.
  """
  if activation_fn == hyperparams_pb2.Hyperparams.NONE:
    return None
  if activation_fn == hyperparams_pb2.Hyperparams.RELU:
    return tf.nn.relu
  if activation_fn == hyperparams_pb2.Hyperparams.RELU_6:
    return tf.nn.relu6
  raise ValueError('Unknown activation function: {}'.format(activation_fn)) 
Example #4
Source File: box_predictor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(self,
                                        op_type=hyperparams_pb2.Hyperparams.FC):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True) 
Example #5
Source File: box_predictor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_get_instance_masks(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4,
        conv_hyperparams=self._build_arg_scope_with_hyperparams(
            op_type=hyperparams_pb2.Hyperparams.CONV),
        predict_instance_masks=True)
    box_predictions = mask_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    mask_predictions = box_predictions[box_predictor.MASK_PREDICTIONS]
    self.assertListEqual([2, 1, 5, 14, 14],
                         mask_predictions.get_shape().as_list()) 
Example #6
Source File: box_predictor_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_build_default_mask_rcnn_box_predictor(self):
    box_predictor_proto = box_predictor_pb2.BoxPredictor()
    box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = (
        hyperparams_pb2.Hyperparams.FC)
    box_predictor = box_predictor_builder.build(
        argscope_fn=mock.Mock(return_value='arg_scope'),
        box_predictor_config=box_predictor_proto,
        is_training=True,
        num_classes=90)
    self.assertFalse(box_predictor._use_dropout)
    self.assertAlmostEqual(box_predictor._dropout_keep_prob, 0.5)
    self.assertEqual(box_predictor.num_classes, 90)
    self.assertTrue(box_predictor._is_training)
    self.assertEqual(box_predictor._box_code_size, 4)
    self.assertFalse(box_predictor._predict_instance_masks)
    self.assertFalse(box_predictor._predict_keypoints) 
Example #7
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_separable_conv2d_and_conv2d_and_transpose_have_same_parameters(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l1_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    kwargs_1, kwargs_2, kwargs_3 = scope.values()
    self.assertDictEqual(kwargs_1, kwargs_2)
    self.assertDictEqual(kwargs_1, kwargs_3) 
Example #8
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_return_l1_regularized_weights(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l1_regularizer {
          weight: 0.5
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]
    regularizer = conv_scope_arguments['weights_regularizer']
    weights = np.array([1., -1, 4., 2.])
    with self.test_session() as sess:
      result = sess.run(regularizer(tf.constant(weights)))
    self.assertAllClose(np.abs(weights).sum() * 0.5, result) 
Example #9
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_return_l2_regularizer_weights(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
          weight: 0.42
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]

    regularizer = conv_scope_arguments['weights_regularizer']
    weights = np.array([1., -1, 4., 2.])
    with self.test_session() as sess:
      result = sess.run(regularizer(tf.constant(weights)))
    self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result) 
Example #10
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_do_not_use_batch_norm_if_default(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]
    self.assertEqual(conv_scope_arguments['normalizer_fn'], None)
    self.assertEqual(conv_scope_arguments['normalizer_params'], None) 
Example #11
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_use_none_activation(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
      activation: NONE
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]
    self.assertEqual(conv_scope_arguments['activation_fn'], None) 
Example #12
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_use_relu_activation(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
      activation: RELU
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]
    self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu) 
Example #13
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_use_relu_6_activation(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
      activation: RELU_6
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]
    self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu6) 
Example #14
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_variance_in_range_with_variance_scaling_initializer_fan_in(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        variance_scaling_initializer {
          factor: 2.0
          mode: FAN_IN
          uniform: false
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]
    initializer = conv_scope_arguments['weights_initializer']
    self._assert_variance_in_range(initializer, shape=[100, 40],
                                   variance=2. / 100.) 
Example #15
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_variance_in_range_with_variance_scaling_initializer_fan_avg(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        variance_scaling_initializer {
          factor: 2.0
          mode: FAN_AVG
          uniform: false
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]
    initializer = conv_scope_arguments['weights_initializer']
    self._assert_variance_in_range(initializer, shape=[100, 40],
                                   variance=4. / (100. + 40.)) 
Example #16
Source File: box_predictor_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(self,
                                        op_type=hyperparams_pb2.Hyperparams.FC):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True) 
Example #17
Source File: hyperparams_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_variance_in_range_with_truncated_normal_initializer(self):
    conv_hyperparams_text_proto = """
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
          mean: 0.0
          stddev: 0.8
        }
      }
    """
    conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
    scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
    conv_scope_arguments = scope.values()[0]
    initializer = conv_scope_arguments['weights_initializer']
    self._assert_variance_in_range(initializer, shape=[100, 40],
                                   variance=0.49, tol=1e-1) 
Example #18
Source File: hyperparams_builder.py    From object_detector_app with MIT License 6 votes vote down vote up
def _build_activation_fn(activation_fn):
  """Builds a callable activation from config.

  Args:
    activation_fn: hyperparams_pb2.Hyperparams.activation

  Returns:
    Callable activation function.

  Raises:
    ValueError: On unknown activation function.
  """
  if activation_fn == hyperparams_pb2.Hyperparams.NONE:
    return None
  if activation_fn == hyperparams_pb2.Hyperparams.RELU:
    return tf.nn.relu
  if activation_fn == hyperparams_pb2.Hyperparams.RELU_6:
    return tf.nn.relu6
  raise ValueError('Unknown activation function: {}'.format(activation_fn)) 
Example #19
Source File: ssd_feature_extractor_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_conv_hyperparams(self):
    conv_hyperparams = hyperparams_pb2.Hyperparams()
    conv_hyperparams_text_proto = """
      activation: RELU_6
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
      batch_norm {
        scale: false
      }
    """
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams)
    return hyperparams_builder.KerasLayerHyperparams(conv_hyperparams) 
Example #20
Source File: mobilenet_v2_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_conv_hyperparams(self):
    conv_hyperparams = hyperparams_pb2.Hyperparams()
    conv_hyperparams_text_proto = """
      activation: RELU_6
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
      batch_norm {
        train: true,
        scale: false,
        center: true,
        decay: 0.2,
        epsilon: 0.1,
      }
    """
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams)
    return hyperparams_builder.KerasLayerHyperparams(conv_hyperparams) 
Example #21
Source File: convolutional_box_predictor_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_arg_scope_with_conv_hyperparams(self):
    conv_hyperparams = hyperparams_pb2.Hyperparams()
    conv_hyperparams_text_proto = """
      activation: RELU_6
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        random_normal_initializer {
          stddev: 0.01
          mean: 0.0
        }
      }
      batch_norm {
        train: true,
      }
    """
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams)
    return hyperparams_builder.build(conv_hyperparams, is_training=True) 
Example #22
Source File: convolutional_box_predictor_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_conv_arg_scope_no_batch_norm(self):
    conv_hyperparams = hyperparams_pb2.Hyperparams()
    conv_hyperparams_text_proto = """
      activation: RELU_6
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        random_normal_initializer {
          stddev: 0.01
          mean: 0.0
        }
      }
    """
    text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams)
    return hyperparams_builder.build(conv_hyperparams, is_training=True) 
Example #23
Source File: mask_head_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(self,
                                        op_type=hyperparams_pb2.Hyperparams.FC):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True) 
Example #24
Source File: mask_head_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(
      self, op_type=hyperparams_pb2.Hyperparams.CONV):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True) 
Example #25
Source File: keypoint_head_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(self,
                                        op_type=hyperparams_pb2.Hyperparams.FC):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True) 
Example #26
Source File: class_head_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(self,
                                        op_type=hyperparams_pb2.Hyperparams.FC):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True) 
Example #27
Source File: class_head_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(
      self, op_type=hyperparams_pb2.Hyperparams.CONV):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True) 
Example #28
Source File: box_head_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(self,
                                        op_type=hyperparams_pb2.Hyperparams.FC):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True) 
Example #29
Source File: box_head_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(
      self, op_type=hyperparams_pb2.Hyperparams.CONV):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True) 
Example #30
Source File: box_head_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _build_arg_scope_with_hyperparams(
      self, op_type=hyperparams_pb2.Hyperparams.CONV):
    hyperparams = hyperparams_pb2.Hyperparams()
    hyperparams_text_proto = """
      activation: NONE
      regularizer {
        l2_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
    text_format.Merge(hyperparams_text_proto, hyperparams)
    hyperparams.op = op_type
    return hyperparams_builder.build(hyperparams, is_training=True)