Python numpy.flexible() Examples
The following are 12
code examples of numpy.flexible().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: _dtype.py From recruit with Apache License 2.0 | 6 votes |
def _name_get(dtype): # provides dtype.name.__get__ if dtype.isbuiltin == 2: # user dtypes don't promise to do anything special return dtype.type.__name__ # Builtin classes are documented as returning a "bit name" name = dtype.type.__name__ # handle bool_, str_, etc if name[-1] == '_': name = name[:-1] # append bit counts to str, unicode, and void if np.issubdtype(dtype, np.flexible) and not _isunsized(dtype): name += "{}".format(dtype.itemsize * 8) # append metadata to datetimes elif dtype.type in (np.datetime64, np.timedelta64): name += _datetime_metadata_str(dtype) return name
Example #2
Source File: _dtype.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def _name_get(dtype): # provides dtype.name.__get__ if dtype.isbuiltin == 2: # user dtypes don't promise to do anything special return dtype.type.__name__ # Builtin classes are documented as returning a "bit name" name = dtype.type.__name__ # handle bool_, str_, etc if name[-1] == '_': name = name[:-1] # append bit counts to str, unicode, and void if np.issubdtype(dtype, np.flexible) and not _isunsized(dtype): name += "{}".format(dtype.itemsize * 8) # append metadata to datetimes elif dtype.type in (np.datetime64, np.timedelta64): name += _datetime_metadata_str(dtype) return name
Example #3
Source File: _dtype.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _name_get(dtype): # provides dtype.name.__get__ if dtype.isbuiltin == 2: # user dtypes don't promise to do anything special return dtype.type.__name__ # Builtin classes are documented as returning a "bit name" name = dtype.type.__name__ # handle bool_, str_, etc if name[-1] == '_': name = name[:-1] # append bit counts to str, unicode, and void if np.issubdtype(dtype, np.flexible) and not _isunsized(dtype): name += "{}".format(dtype.itemsize * 8) # append metadata to datetimes elif dtype.type in (np.datetime64, np.timedelta64): name += _datetime_metadata_str(dtype) return name
Example #4
Source File: _dtype.py From coffeegrindsize with MIT License | 6 votes |
def _name_get(dtype): # provides dtype.name.__get__ if dtype.isbuiltin == 2: # user dtypes don't promise to do anything special return dtype.type.__name__ # Builtin classes are documented as returning a "bit name" name = dtype.type.__name__ # handle bool_, str_, etc if name[-1] == '_': name = name[:-1] # append bit counts to str, unicode, and void if np.issubdtype(dtype, np.flexible) and not _isunsized(dtype): name += "{}".format(dtype.itemsize * 8) # append metadata to datetimes elif dtype.type in (np.datetime64, np.timedelta64): name += _datetime_metadata_str(dtype) return name
Example #5
Source File: _dtype.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _name_get(dtype): # provides dtype.name.__get__ if dtype.isbuiltin == 2: # user dtypes don't promise to do anything special return dtype.type.__name__ # Builtin classes are documented as returning a "bit name" name = dtype.type.__name__ # handle bool_, str_, etc if name[-1] == '_': name = name[:-1] # append bit counts to str, unicode, and void if np.issubdtype(dtype, np.flexible) and not _isunsized(dtype): name += "{}".format(dtype.itemsize * 8) # append metadata to datetimes elif dtype.type in (np.datetime64, np.timedelta64): name += _datetime_metadata_str(dtype) return name
Example #6
Source File: _dtype.py From recruit with Apache License 2.0 | 5 votes |
def __str__(dtype): if dtype.fields is not None: return _struct_str(dtype, include_align=True) elif dtype.subdtype: return _subarray_str(dtype) elif issubclass(dtype.type, np.flexible) or not dtype.isnative: return dtype.str else: return dtype.name
Example #7
Source File: _dtype.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def __str__(dtype): if dtype.fields is not None: return _struct_str(dtype, include_align=True) elif dtype.subdtype: return _subarray_str(dtype) elif issubclass(dtype.type, np.flexible) or not dtype.isnative: return dtype.str else: return dtype.name
Example #8
Source File: _dtype.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def __str__(dtype): if dtype.fields is not None: return _struct_str(dtype, include_align=True) elif dtype.subdtype: return _subarray_str(dtype) elif issubclass(dtype.type, np.flexible) or not dtype.isnative: return dtype.str else: return dtype.name
Example #9
Source File: _dtype.py From coffeegrindsize with MIT License | 5 votes |
def __str__(dtype): if dtype.fields is not None: return _struct_str(dtype, include_align=True) elif dtype.subdtype: return _subarray_str(dtype) elif issubclass(dtype.type, np.flexible) or not dtype.isnative: return dtype.str else: return dtype.name
Example #10
Source File: _dtype.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __str__(dtype): if dtype.fields is not None: return _struct_str(dtype, include_align=True) elif dtype.subdtype: return _subarray_str(dtype) elif issubclass(dtype.type, np.flexible) or not dtype.isnative: return dtype.str else: return dtype.name
Example #11
Source File: construction.py From recruit with Apache License 2.0 | 4 votes |
def init_dict(data, index, columns, dtype=None): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ if columns is not None: from pandas.core.series import Series arrays = Series(data, index=columns, dtype=object) data_names = arrays.index missing = arrays.isnull() if index is None: # GH10856 # raise ValueError if only scalars in dict index = extract_index(arrays[~missing]) else: index = ensure_index(index) # no obvious "empty" int column if missing.any() and not is_integer_dtype(dtype): if dtype is None or np.issubdtype(dtype, np.flexible): # GH#1783 nan_dtype = object else: nan_dtype = dtype val = construct_1d_arraylike_from_scalar(np.nan, len(index), nan_dtype) arrays.loc[missing] = [val] * missing.sum() else: for key in data: if (isinstance(data[key], ABCDatetimeIndex) and data[key].tz is not None): # GH#24096 need copy to be deep for datetime64tz case # TODO: See if we can avoid these copies data[key] = data[key].copy(deep=True) keys = com.dict_keys_to_ordered_list(data) columns = data_names = Index(keys) arrays = [data[k] for k in keys] return arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype) # ---------------------------------------------------------------------
Example #12
Source File: construction.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 4 votes |
def init_dict(data, index, columns, dtype=None): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ if columns is not None: from pandas.core.series import Series arrays = Series(data, index=columns, dtype=object) data_names = arrays.index missing = arrays.isnull() if index is None: # GH10856 # raise ValueError if only scalars in dict index = extract_index(arrays[~missing]) else: index = ensure_index(index) # no obvious "empty" int column if missing.any() and not is_integer_dtype(dtype): if dtype is None or np.issubdtype(dtype, np.flexible): # GH#1783 nan_dtype = object else: nan_dtype = dtype val = construct_1d_arraylike_from_scalar(np.nan, len(index), nan_dtype) arrays.loc[missing] = [val] * missing.sum() else: for key in data: if (isinstance(data[key], ABCDatetimeIndex) and data[key].tz is not None): # GH#24096 need copy to be deep for datetime64tz case # TODO: See if we can avoid these copies data[key] = data[key].copy(deep=True) keys = com.dict_keys_to_ordered_list(data) columns = data_names = Index(keys) arrays = [data[k] for k in keys] return arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype) # ---------------------------------------------------------------------