Python numpy.signedinteger() Examples
The following are 30
code examples of numpy.signedinteger().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.

Example #1
Source File: Classifier.py From onnxmltools with MIT License | 6 votes |
def calculate_xgboost_classifier_output_shapes(operator): check_input_and_output_numbers(operator, input_count_range=1, output_count_range=2) check_input_and_output_types(operator, good_input_types=[FloatTensorType, Int64TensorType]) N = operator.inputs[0].type.shape[0] xgb_node = operator.raw_operator params = get_xgb_params(xgb_node) booster = xgb_node.get_booster() atts = booster.attributes() ntrees = len(booster.get_dump(with_stats=True, dump_format = 'json')) objective = params["objective"] if objective == "binary:logistic": ncl = 2 else: ncl = ntrees // params['n_estimators'] if objective == "reg:logistic" and ncl == 1: ncl = 2 classes = xgb_node.classes_ if (np.issubdtype(classes.dtype, np.floating) or np.issubdtype(classes.dtype, np.signedinteger)): operator.outputs[0].type = Int64TensorType(shape=[N]) else: operator.outputs[0].type = StringTensorType(shape=[N]) operator.outputs[1].type = operator.outputs[1].type = FloatTensorType([N, ncl])
Example #2
Source File: type_mapping.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def promote_types(dtype1, dtype2): """ Get the smallest type to which the given scalar types can be cast. Args: dtype1 (builtin): dtype2 (builtin): Returns: A builtin datatype or None. """ nptype1 = nptype_from_builtin(dtype1) nptype2 = nptype_from_builtin(dtype2) # Circumvent the undesirable np type promotion: # >> np.promote_types(np.float32, np.int) # dtype('float64') if np.issubdtype(nptype1, np.floating) and np.issubdtype(nptype2, np.signedinteger): nppromoted = nptype1 elif np.issubdtype(nptype2, np.floating) and np.issubdtype( nptype1, np.signedinteger ): nppromoted = nptype2 else: nppromoted = np.promote_types(nptype1, nptype2) return numpy_type_to_builtin_type(nppromoted)
Example #3
Source File: label_encoder.py From sklearn-onnx with MIT License | 6 votes |
def convert_sklearn_label_encoder(scope, operator, container): op = operator.raw_operator op_type = 'LabelEncoder' attrs = {'name': scope.get_unique_operator_name(op_type)} classes = op.classes_ if np.issubdtype(classes.dtype, np.floating): attrs['keys_floats'] = classes elif np.issubdtype(classes.dtype, np.signedinteger): attrs['keys_int64s'] = classes else: attrs['keys_strings'] = np.array([s.encode('utf-8') for s in classes]) attrs['values_int64s'] = np.arange(len(classes)) container.add_node(op_type, operator.input_full_names, operator.output_full_names, op_domain='ai.onnx.ml', op_version=2, **attrs)
Example #4
Source File: lax_numpy_test.py From trax with Apache License 2.0 | 6 votes |
def _dtypes_are_compatible_for_bitwise_ops(args): if len(args) <= 1: return True is_signed = lambda dtype: lnp.issubdtype(dtype, onp.signedinteger) width = lambda dtype: lnp.iinfo(dtype).bits x, y = args # `lnp.iinfo(dtype).bits` can't be called on bools, so we convert bools to # ints. if x == lnp.bool_: x = lnp.int32 if y == lnp.bool_: y = lnp.int32 if width(x) > width(y): x, y = y, x if x == lnp.uint32 and y == lnp.uint64: return False # The following condition seems a little ad hoc, but seems to capture what # numpy actually implements. return ( is_signed(x) == is_signed(y) or (width(x) == 32 and width(y) == 32) or (width(x) == 32 and width(y) == 64 and is_signed(y)))
Example #5
Source File: __init__.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask : array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.signedinteger): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask
Example #6
Source File: gradient_boosting.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def fit(self, X, y, sample_weight=None): """Fit the estimator. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy, shape (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary sample_weight : array, shape (n_samples,) Individual weights for each sample """ if np.issubdtype(y.dtype, np.signedinteger): # classification self.n_classes = np.unique(y).shape[0] if self.n_classes == 2: self.n_classes = 1 else: # regression self.n_classes = 1
Example #7
Source File: __init__.py From twitter-stock-recommendation with MIT License | 6 votes |
def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask : array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.signedinteger): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask
Example #8
Source File: test_abc.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #9
Source File: test_abc.py From coffeegrindsize with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #10
Source File: utils_classifier.py From sklearn-onnx with MIT License | 5 votes |
def _finalize_converter_classes(scope, argmax_output_name, output_full_name, container, classes): """ See :func:`convert_voting_classifier`. """ if np.issubdtype(classes.dtype, np.floating): class_type = onnx_proto.TensorProto.INT32 classes = np.array(list(map(lambda x: int(x), classes))) elif np.issubdtype(classes.dtype, np.signedinteger): class_type = onnx_proto.TensorProto.INT32 else: classes = np.array([s.encode('utf-8') for s in classes]) class_type = onnx_proto.TensorProto.STRING classes_name = scope.get_unique_variable_name('classes') container.add_initializer(classes_name, class_type, classes.shape, classes) array_feature_extractor_result_name = scope.get_unique_variable_name( 'array_feature_extractor_result') container.add_node( 'ArrayFeatureExtractor', [classes_name, argmax_output_name], array_feature_extractor_result_name, op_domain='ai.onnx.ml', name=scope.get_unique_operator_name('ArrayFeatureExtractor')) output_shape = (-1,) if class_type == onnx_proto.TensorProto.INT32: cast2_result_name = scope.get_unique_variable_name('cast2_result') reshaped_result_name = scope.get_unique_variable_name( 'reshaped_result') apply_cast(scope, array_feature_extractor_result_name, cast2_result_name, container, to=onnx_proto.TensorProto.FLOAT) apply_reshape(scope, cast2_result_name, reshaped_result_name, container, desired_shape=output_shape) apply_cast(scope, reshaped_result_name, output_full_name, container, to=onnx_proto.TensorProto.INT64) else: # string labels apply_reshape(scope, array_feature_extractor_result_name, output_full_name, container, desired_shape=output_shape)
Example #11
Source File: _parse.py From sklearn-onnx with MIT License | 5 votes |
def _parse_sklearn_classifier(scope, model, inputs, custom_parsers=None): probability_tensor = _parse_sklearn_simple_model( scope, model, inputs, custom_parsers=custom_parsers) if model.__class__ in [NuSVC, SVC] and not model.probability: return probability_tensor options = scope.get_options(model, dict(zipmap=True)) if not options['zipmap']: return probability_tensor this_operator = scope.declare_local_operator('SklearnZipMap') this_operator.inputs = probability_tensor label_type = Int64TensorType([None]) classes = get_label_classes(scope, model) if (isinstance(model.classes_, list) and isinstance(model.classes_[0], np.ndarray)): # multi-label problem pass elif np.issubdtype(classes.dtype, np.floating): classes = np.array(list(map(lambda x: int(x), classes))) if set(map(lambda x: float(x), classes)) != set(model.classes_): raise RuntimeError("skl2onnx implicitly converts float class " "labels into integers but at least one label " "is not an integer. Class labels should " "be integers or strings.") this_operator.classlabels_int64s = classes elif np.issubdtype(classes.dtype, np.signedinteger): this_operator.classlabels_int64s = classes elif np.issubdtype(classes.dtype, np.unsignedinteger): this_operator.classlabels_int64s = classes else: classes = np.array([s.encode('utf-8') for s in classes]) this_operator.classlabels_strings = classes label_type = StringTensorType([None]) output_label = scope.declare_local_variable('output_label', label_type) output_probability = scope.declare_local_variable( 'output_probability', SequenceType(DictionaryType(label_type, scope.tensor_type()))) this_operator.outputs.append(output_label) this_operator.outputs.append(output_probability) return this_operator.outputs
Example #12
Source File: test_abc.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #13
Source File: gradient_boosting.py From twitter-stock-recommendation with MIT License | 5 votes |
def fit(self, X, y, sample_weight=None): if np.issubdtype(y.dtype, np.signedinteger): # classification self.n_classes = np.unique(y).shape[0] if self.n_classes == 2: self.n_classes = 1 else: # regression self.n_classes = 1
Example #14
Source File: one_hot_encoder.py From sklearn-onnx with MIT License | 5 votes |
def calculate_sklearn_one_hot_encoder_output_shapes(operator): op = operator.raw_operator categories_len = 0 for index, categories in enumerate(op.categories_): if hasattr(op, 'drop_idx_') and op.drop_idx_ is not None: categories = (categories[np.arange(len(categories)) != op.drop_idx_[index]]) categories_len += len(categories) instances = operator.inputs[0].type.shape[0] if np.issubdtype(op.dtype, np.signedinteger): operator.outputs[0].type = Int64TensorType([instances, categories_len]) else: operator.outputs[0].type = FloatTensorType([instances, categories_len])
Example #15
Source File: _parse.py From onnxmltools with MIT License | 5 votes |
def _parse_sklearn_classifier(scope, model, inputs): probability_tensor = _parse_lightgbm_simple_model( scope, model, inputs) this_operator = scope.declare_local_operator('LgbmZipMap') this_operator.inputs = probability_tensor classes = model.classes_ label_type = Int64Type() if (isinstance(model.classes_, list) and isinstance(model.classes_[0], numpy.ndarray)): # multi-label problem # this_operator.classlabels_int64s = list(range(0, len(classes))) raise NotImplementedError("multi-label is not supported") elif numpy.issubdtype(model.classes_.dtype, numpy.floating): classes = numpy.array(list(map(lambda x: int(x), classes))) if set(map(lambda x: float(x), classes)) != set(model.classes_): raise RuntimeError("skl2onnx implicitly converts float class " "labels into integers but at least one label " "is not an integer. Class labels should " "be integers or strings.") this_operator.classlabels_int64s = classes elif numpy.issubdtype(model.classes_.dtype, numpy.signedinteger): this_operator.classlabels_int64s = classes else: classes = numpy.array([s.encode('utf-8') for s in classes]) this_operator.classlabels_strings = classes label_type = StringType() output_label = scope.declare_local_variable('label', label_type) output_probability = scope.declare_local_variable( 'probabilities', SequenceType(DictionaryType(label_type, FloatTensorType()))) this_operator.outputs.append(output_label) this_operator.outputs.append(output_probability) return this_operator.outputs
Example #16
Source File: numeric.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as ints. """ if not issubclass(data.dtype.type, np.signedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast')
Example #17
Source File: numeric.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as ints. """ if not issubclass(data.dtype.type, np.signedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast')
Example #18
Source File: p2p.py From spatial_access with GNU General Public License v3.0 | 5 votes |
def _get_type_of_series(series): """ Returns: type of the series (int16, int32, int64, int128 or str) Raises: ImproperIndecesTypeException: If the series is not one of the expected types. """ if type(series[0]) == str: return str elif issubdtype(series.dtype, integer) or issubdtype(series.dtype, signedinteger): return integer raise ImproperIndecesTypeException(str(series.dtype))
Example #19
Source File: utilities.py From Brancher with MIT License | 5 votes |
def coerce_to_dtype(data, is_observed=False): """Summary""" def reformat_tensor(result): if is_observed: result = torch.unsqueeze(result, dim=0) result_shape = result.shape if len(result_shape) == 2: result = result.contiguous().view(size=result_shape + tuple([1, 1])) elif len(result_shape) == 3: result = result.contiguous().view(size=result_shape + tuple([1])) #if len(result_shape) == 2: # result = result.contiguous().view(size=result_shape + tuple([1])) else: result = torch.unsqueeze(torch.unsqueeze(result, dim=0), dim=1) return result dtype = type(data) ##TODO: do we need any additional shape checking? if dtype is torch.Tensor: # to tensor result = data.float() elif dtype is np.ndarray: # to tensor result = torch.tensor(data).float() elif dtype is pd.DataFrame: result = torch.tensor(data.values).float() elif dtype in [float, int] or dtype.__base__ in [np.floating, np.signedinteger]: # to tensor result = torch.tensor(data * np.ones(shape=(1, 1))).float() elif dtype in [list, set, tuple, dict, str]: # to discrete return data else: raise TypeError("Invalid input dtype {} - expected float, integer, np.ndarray, or torch var.".format(dtype)) result = reformat_tensor(result) return result.to(device)
Example #20
Source File: test_abc.py From pySINDy with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #21
Source File: test.py From PHATE with GNU General Public License v2.0 | 5 votes |
def test_simple(): tree_data, tree_clusters = phate.tree.gen_dla(n_branch=3) phate_operator = phate.PHATE(knn=15, t=100, verbose=False) tree_phate = phate_operator.fit_transform(tree_data) assert tree_phate.shape == (tree_data.shape[0], 2) clusters = phate.cluster.kmeans(phate_operator, n_clusters='auto') assert np.issubdtype(clusters.dtype, np.signedinteger) assert len(np.unique(clusters)) >= 2 assert len(clusters.shape) == 1 assert len(clusters) == tree_data.shape[0] clusters = phate.cluster.kmeans(phate_operator, n_clusters=3) assert np.issubdtype(clusters.dtype, np.signedinteger) assert len(np.unique(clusters)) == 3 assert len(clusters.shape) == 1 assert len(clusters) == tree_data.shape[0] phate_operator.fit(phate_operator.graph) G = graphtools.Graph( phate_operator.graph.kernel, precomputed="affinity", use_pygsp=True, verbose=False, ) phate_operator.fit(G) G = pygsp.graphs.Graph(G.W) phate_operator.fit(G) phate_operator.fit(anndata.AnnData(tree_data)) with assert_raises_message(TypeError, "Expected phate_op to be of type PHATE. Got 1"): phate.cluster.kmeans(1)
Example #22
Source File: numeric.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as ints. """ if not issubclass(data.dtype.type, np.signedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast')
Example #23
Source File: test_abc.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #24
Source File: numeric.py From vnpy_crypto with MIT License | 5 votes |
def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as ints. """ if not issubclass(data.dtype.type, np.signedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast')
Example #25
Source File: test_abc.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #26
Source File: test_abc.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #27
Source File: test_abc.py From vnpy_crypto with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #28
Source File: measurements.py From lambda-packs with MIT License | 5 votes |
def _safely_castable_to_int(dt): """Test whether the numpy data type `dt` can be safely cast to an int.""" int_size = np.dtype(int).itemsize safe = ((np.issubdtype(dt, np.signedinteger) and dt.itemsize <= int_size) or (np.issubdtype(dt, np.unsignedinteger) and dt.itemsize < int_size)) return safe
Example #29
Source File: test_base.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_constructor6(self): # infer dimensions and dtype from lists indptr = [0, 1, 3, 3] indices = [0, 5, 1, 2] data = [1, 2, 3, 4] csr = csr_matrix((data, indices, indptr)) assert_array_equal(csr.shape, (3,6)) assert_(np.issubdtype(csr.dtype, np.signedinteger))
Example #30
Source File: test_base.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_constructor6(self): # infer dimensions and dtype from lists indptr = [0, 1, 3, 3] indices = [0, 5, 1, 2] data = [1, 2, 3, 4] csc = csc_matrix((data, indices, indptr)) assert_array_equal(csc.shape,(6,3)) assert_(np.issubdtype(csc.dtype, np.signedinteger))