Python numpy.longfloat() Examples
The following are 7
code examples of numpy.longfloat().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_pathfinding.py From indra with BSD 2-Clause "Simplified" License | 6 votes |
def _setup_unsigned_graph(): edges, signed_edges, edge_beliefs, all_ns = _digraph_setup() dg = nx.DiGraph() dg.add_edges_from(edges) # Add belief for e in dg.edges: dg.edges[e]['belief'] = edge_beliefs[e] dg.edges[e]['weight'] = -np.log(edge_beliefs[e], dtype=np.longfloat) # Add namespaces nodes1, nodes2 = list(zip(*edges)) nodes = set(nodes1).union(nodes2) for node in nodes: ns = node[0] _id = node[1] dg.nodes[node]['ns'] = ns dg.nodes[node]['id'] = _id return dg, all_ns
Example #2
Source File: test_indranet_assembler.py From indra with BSD 2-Clause "Simplified" License | 6 votes |
def test_to_digraph(): ia = IndraNetAssembler([ab1, ab2, ab3, ab4, bc1, bc2, bc3, bc4]) df = ia.make_df() net = IndraNet.from_df(df) assert len(net.nodes) == 3 assert len(net.edges) == 8 digraph = net.to_digraph(weight_mapping=_weight_mapping) assert len(digraph.nodes) == 3 assert len(digraph.edges) == 2 assert set([ stmt['stmt_type'] for stmt in digraph['a']['b']['statements']]) == { 'Activation', 'Phosphorylation', 'Inhibition', 'IncreaseAmount'} assert all(digraph.edges[e].get('belief', False) for e in digraph.edges) assert all(isinstance(digraph.edges[e]['belief'], (float, np.longfloat)) for e in digraph.edges) assert all(digraph.edges[e].get('weight', False) for e in digraph.edges) assert all(isinstance(digraph.edges[e]['weight'], (float, np.longfloat)) for e in digraph.edges) digraph_from_df = IndraNet.digraph_from_df(df) assert nx.is_isomorphic(digraph, digraph_from_df)
Example #3
Source File: test_regression.py From Computable with MIT License | 5 votes |
def test_arange_endian(self,level=rlevel): """Ticket #111""" ref = np.arange(10) x = np.arange(10, dtype='<f8') assert_array_equal(ref, x) x = np.arange(10, dtype='>f8') assert_array_equal(ref, x) # Longfloat support is not consistent enough across # platforms for this test to be meaningful. # def test_longfloat_repr(self,level=rlevel): # """Ticket #112""" # if np.longfloat(0).itemsize > 8: # a = np.exp(np.array([1000],dtype=np.longfloat)) # assert_(str(a)[1:9] == str(a[0])[:8])
Example #4
Source File: test_indranet_assembler.py From indra with BSD 2-Clause "Simplified" License | 5 votes |
def test_to_signed_graph(): ia = IndraNetAssembler([ab1, ab2, ab3, ab4, bc1, bc2, bc3, bc4]) df = ia.make_df() net = IndraNet.from_df(df) signed_graph = net.to_signed_graph( sign_dict=default_sign_dict, weight_mapping=_weight_mapping) assert len(signed_graph.nodes) == 3 assert len(signed_graph.edges) == 4 assert set([stmt['stmt_type'] for stmt in signed_graph['a']['b'][0]['statements']]) == { 'Activation', 'IncreaseAmount'} assert set([stmt['stmt_type'] for stmt in signed_graph['a']['b'][1]['statements']]) == {'Inhibition'} assert set([stmt['stmt_type'] for stmt in signed_graph['b']['c'][0]['statements']]) == { 'Activation', 'IncreaseAmount'} assert set([stmt['stmt_type'] for stmt in signed_graph['b']['c'][1]['statements']]) == { 'Inhibition', 'DecreaseAmount'} assert all(signed_graph.edges[e].get('belief', False) for e in signed_graph.edges) assert all(isinstance(signed_graph.edges[e]['belief'], (float, np.longfloat)) for e in signed_graph.edges) assert all(signed_graph.edges[e].get('weight', False) for e in signed_graph.edges) assert all(isinstance(signed_graph.edges[e]['weight'], (float, np.longfloat)) for e in signed_graph.edges)
Example #5
Source File: net.py From indra with BSD 2-Clause "Simplified" License | 5 votes |
def _complementary_belief(G, edge): # Aggregate belief score: 1-prod(1-belief_i) np.seterr(all='raise') NP_PRECISION = 10 ** -np.finfo(np.longfloat).precision # Numpy precision belief_list = [s['belief'] for s in G.edges[edge]['statements']] try: ag_belief = np.longfloat(1.0) - np.prod(np.fromiter( map(lambda belief: np.longfloat(1.0) - belief, belief_list), dtype=np.longfloat)) except FloatingPointError as err: logger.warning('%s: Resetting ag_belief to 10*np.longfloat precision ' '(%.0e)' % (err, Decimal(NP_PRECISION * 10))) ag_belief = NP_PRECISION * 10 return ag_belief
Example #6
Source File: test_regression.py From ImageFusion with MIT License | 5 votes |
def test_arange_endian(self,level=rlevel): """Ticket #111""" ref = np.arange(10) x = np.arange(10, dtype='<f8') assert_array_equal(ref, x) x = np.arange(10, dtype='>f8') assert_array_equal(ref, x) # Longfloat support is not consistent enough across # platforms for this test to be meaningful. # def test_longfloat_repr(self,level=rlevel): # """Ticket #112""" # if np.longfloat(0).itemsize > 8: # a = np.exp(np.array([1000],dtype=np.longfloat)) # assert_(str(a)[1:9] == str(a[0])[:8])
Example #7
Source File: activators.py From AiLearning with GNU General Public License v3.0 | 5 votes |
def forward(self, weighted_input): return np.longfloat(1.0 / (1.0 + np.exp(-weighted_input)))