Python numpy.little_endian() Examples
The following are 10
code examples of numpy.little_endian().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: netcdf.py From me-ica with GNU Lesser General Public License v2.1 | 5 votes |
def _write_var_data(self, name): var = self.variables[name] # Set begin in file header. the_beguine = self.fp.tell() self.fp.seek(var._begin) self._pack_begin(the_beguine) self.fp.seek(the_beguine) # Write data. if not var.isrec: self.fp.write(var.data.tostring()) count = var.data.size * var.data.itemsize self.fp.write(asbytes('0') * (var._vsize - count)) else: # record variable # Handle rec vars with shape[0] < nrecs. if self._recs > len(var.data): shape = (self._recs,) + var.data.shape[1:] var.data.resize(shape) pos0 = pos = self.fp.tell() for rec in var.data: # Apparently scalars cannot be converted to big endian. If we # try to convert a ``=i4`` scalar to, say, '>i4' the dtype # will remain as ``=i4``. if not rec.shape and (rec.dtype.byteorder == '<' or (rec.dtype.byteorder == '=' and LITTLE_ENDIAN)): rec = rec.byteswap() self.fp.write(rec.tostring()) # Padding count = rec.size * rec.itemsize self.fp.write(asbytes('0') * (var._vsize - count)) pos += self._recsize self.fp.seek(pos) self.fp.seek(pos0 + var._vsize)
Example #2
Source File: netcdf.py From me-ica with GNU Lesser General Public License v2.1 | 5 votes |
def _write_values(self, values): if hasattr(values, 'dtype'): nc_type = REVERSE[values.dtype.char, values.dtype.itemsize] else: types = [ (int, NC_INT), (long, NC_INT), (float, NC_FLOAT), (basestring, NC_CHAR), ] try: sample = values[0] except TypeError: sample = values for class_, nc_type in types: if isinstance(sample, class_): break typecode, size = TYPEMAP[nc_type] dtype_ = '>%s' % typecode values = asarray(values, dtype=dtype_) self.fp.write(asbytes(nc_type)) if values.dtype.char == 'S': nelems = values.itemsize else: nelems = values.size self._pack_int(nelems) if not values.shape and (values.dtype.byteorder == '<' or (values.dtype.byteorder == '=' and LITTLE_ENDIAN)): values = values.byteswap() self.fp.write(values.tostring()) count = values.size * values.itemsize self.fp.write(asbytes('0') * (-count % 4)) # pad
Example #3
Source File: netcdf.py From lambda-packs with MIT License | 5 votes |
def _write_var_data(self, name): var = self.variables[name] # Set begin in file header. the_beguine = self.fp.tell() self.fp.seek(var._begin) self._pack_begin(the_beguine) self.fp.seek(the_beguine) # Write data. if not var.isrec: self.fp.write(var.data.tostring()) count = var.data.size * var.data.itemsize self.fp.write(b'0' * (var._vsize - count)) else: # record variable # Handle rec vars with shape[0] < nrecs. if self._recs > len(var.data): shape = (self._recs,) + var.data.shape[1:] # Resize in-place does not always work since # the array might not be single-segment try: var.data.resize(shape) except ValueError: var.__dict__['data'] = np.resize(var.data, shape).astype(var.data.dtype) pos0 = pos = self.fp.tell() for rec in var.data: # Apparently scalars cannot be converted to big endian. If we # try to convert a ``=i4`` scalar to, say, '>i4' the dtype # will remain as ``=i4``. if not rec.shape and (rec.dtype.byteorder == '<' or (rec.dtype.byteorder == '=' and LITTLE_ENDIAN)): rec = rec.byteswap() self.fp.write(rec.tostring()) # Padding count = rec.size * rec.itemsize self.fp.write(b'0' * (var._vsize - count)) pos += self._recsize self.fp.seek(pos) self.fp.seek(pos0 + var._vsize)
Example #4
Source File: netcdf.py From Computable with MIT License | 5 votes |
def _write_var_data(self, name): var = self.variables[name] # Set begin in file header. the_beguine = self.fp.tell() self.fp.seek(var._begin) self._pack_begin(the_beguine) self.fp.seek(the_beguine) # Write data. if not var.isrec: self.fp.write(var.data.tostring()) count = var.data.size * var.data.itemsize self.fp.write(b'0' * (var._vsize - count)) else: # record variable # Handle rec vars with shape[0] < nrecs. if self._recs > len(var.data): shape = (self._recs,) + var.data.shape[1:] var.data.resize(shape) pos0 = pos = self.fp.tell() for rec in var.data: # Apparently scalars cannot be converted to big endian. If we # try to convert a ``=i4`` scalar to, say, '>i4' the dtype # will remain as ``=i4``. if not rec.shape and (rec.dtype.byteorder == '<' or (rec.dtype.byteorder == '=' and LITTLE_ENDIAN)): rec = rec.byteswap() self.fp.write(rec.tostring()) # Padding count = rec.size * rec.itemsize self.fp.write(b'0' * (var._vsize - count)) pos += self._recsize self.fp.seek(pos) self.fp.seek(pos0 + var._vsize)
Example #5
Source File: netcdf.py From Computable with MIT License | 5 votes |
def _write_values(self, values): if hasattr(values, 'dtype'): nc_type = REVERSE[values.dtype.char, values.dtype.itemsize] else: types = [(t, NC_INT) for t in integer_types] types += [ (float, NC_FLOAT), (str, NC_CHAR), ] try: sample = values[0] except TypeError: sample = values for class_, nc_type in types: if isinstance(sample, class_): break typecode, size = TYPEMAP[nc_type] dtype_ = '>%s' % typecode values = asarray(values, dtype=dtype_) self.fp.write(asbytes(nc_type)) if values.dtype.char == 'S': nelems = values.itemsize else: nelems = values.size self._pack_int(nelems) if not values.shape and (values.dtype.byteorder == '<' or (values.dtype.byteorder == '=' and LITTLE_ENDIAN)): values = values.byteswap() self.fp.write(values.tostring()) count = values.size * values.itemsize self.fp.write(b'0' * (-count % 4)) # pad
Example #6
Source File: netcdf.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def _write_var_data(self, name): var = self.variables[name] # Set begin in file header. the_beguine = self.fp.tell() self.fp.seek(var._begin) self._pack_begin(the_beguine) self.fp.seek(the_beguine) # Write data. if not var.isrec: self.fp.write(var.data.tostring()) count = var.data.size * var.data.itemsize self._write_var_padding(var, var._vsize - count) else: # record variable # Handle rec vars with shape[0] < nrecs. if self._recs > len(var.data): shape = (self._recs,) + var.data.shape[1:] # Resize in-place does not always work since # the array might not be single-segment try: var.data.resize(shape) except ValueError: var.__dict__['data'] = np.resize(var.data, shape).astype(var.data.dtype) pos0 = pos = self.fp.tell() for rec in var.data: # Apparently scalars cannot be converted to big endian. If we # try to convert a ``=i4`` scalar to, say, '>i4' the dtype # will remain as ``=i4``. if not rec.shape and (rec.dtype.byteorder == '<' or (rec.dtype.byteorder == '=' and LITTLE_ENDIAN)): rec = rec.byteswap() self.fp.write(rec.tostring()) # Padding count = rec.size * rec.itemsize self._write_var_padding(var, var._vsize - count) pos += self._recsize self.fp.seek(pos) self.fp.seek(pos0 + var._vsize)
Example #7
Source File: netcdf.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _write_var_data(self, name): var = self.variables[name] # Set begin in file header. the_beguine = self.fp.tell() self.fp.seek(var._begin) self._pack_begin(the_beguine) self.fp.seek(the_beguine) # Write data. if not var.isrec: self.fp.write(var.data.tostring()) count = var.data.size * var.data.itemsize self.fp.write(b'0' * (var._vsize - count)) else: # record variable # Handle rec vars with shape[0] < nrecs. if self._recs > len(var.data): shape = (self._recs,) + var.data.shape[1:] # Resize in-place does not always work since # the array might not be single-segment try: var.data.resize(shape) except ValueError: var.__dict__['data'] = np.resize(var.data, shape).astype(var.data.dtype) pos0 = pos = self.fp.tell() for rec in var.data: # Apparently scalars cannot be converted to big endian. If we # try to convert a ``=i4`` scalar to, say, '>i4' the dtype # will remain as ``=i4``. if not rec.shape and (rec.dtype.byteorder == '<' or (rec.dtype.byteorder == '=' and LITTLE_ENDIAN)): rec = rec.byteswap() self.fp.write(rec.tostring()) # Padding count = rec.size * rec.itemsize self.fp.write(b'0' * (var._vsize - count)) pos += self._recsize self.fp.seek(pos) self.fp.seek(pos0 + var._vsize)
Example #8
Source File: netcdf.py From lambda-packs with MIT License | 4 votes |
def _write_values(self, values): if hasattr(values, 'dtype'): nc_type = REVERSE[values.dtype.char, values.dtype.itemsize] else: types = [(t, NC_INT) for t in integer_types] types += [ (float, NC_FLOAT), (str, NC_CHAR) ] # bytes index into scalars in py3k. Check for "string" types if isinstance(values, text_type) or isinstance(values, binary_type): sample = values else: try: sample = values[0] # subscriptable? except TypeError: sample = values # scalar for class_, nc_type in types: if isinstance(sample, class_): break typecode, size = TYPEMAP[nc_type] dtype_ = '>%s' % typecode # asarray() dies with bytes and '>c' in py3k. Change to 'S' dtype_ = 'S' if dtype_ == '>c' else dtype_ values = asarray(values, dtype=dtype_) self.fp.write(asbytes(nc_type)) if values.dtype.char == 'S': nelems = values.itemsize else: nelems = values.size self._pack_int(nelems) if not values.shape and (values.dtype.byteorder == '<' or (values.dtype.byteorder == '=' and LITTLE_ENDIAN)): values = values.byteswap() self.fp.write(values.tostring()) count = values.size * values.itemsize self.fp.write(b'0' * (-count % 4)) # pad
Example #9
Source File: netcdf.py From GraphicDesignPatternByPython with MIT License | 4 votes |
def _write_att_values(self, values): if hasattr(values, 'dtype'): nc_type = REVERSE[values.dtype.char, values.dtype.itemsize] else: types = [(t, NC_INT) for t in integer_types] types += [ (float, NC_FLOAT), (str, NC_CHAR) ] # bytes index into scalars in py3k. Check for "string" types if isinstance(values, text_type) or isinstance(values, binary_type): sample = values else: try: sample = values[0] # subscriptable? except TypeError: sample = values # scalar for class_, nc_type in types: if isinstance(sample, class_): break typecode, size = TYPEMAP[nc_type] dtype_ = '>%s' % typecode # asarray() dies with bytes and '>c' in py3k. Change to 'S' dtype_ = 'S' if dtype_ == '>c' else dtype_ values = asarray(values, dtype=dtype_) self.fp.write(asbytes(nc_type)) if values.dtype.char == 'S': nelems = values.itemsize else: nelems = values.size self._pack_int(nelems) if not values.shape and (values.dtype.byteorder == '<' or (values.dtype.byteorder == '=' and LITTLE_ENDIAN)): values = values.byteswap() self.fp.write(values.tostring()) count = values.size * values.itemsize self.fp.write(b'\x00' * (-count % 4)) # pad
Example #10
Source File: netcdf.py From Splunking-Crime with GNU Affero General Public License v3.0 | 4 votes |
def _write_values(self, values): if hasattr(values, 'dtype'): nc_type = REVERSE[values.dtype.char, values.dtype.itemsize] else: types = [(t, NC_INT) for t in integer_types] types += [ (float, NC_FLOAT), (str, NC_CHAR) ] # bytes index into scalars in py3k. Check for "string" types if isinstance(values, text_type) or isinstance(values, binary_type): sample = values else: try: sample = values[0] # subscriptable? except TypeError: sample = values # scalar for class_, nc_type in types: if isinstance(sample, class_): break typecode, size = TYPEMAP[nc_type] dtype_ = '>%s' % typecode # asarray() dies with bytes and '>c' in py3k. Change to 'S' dtype_ = 'S' if dtype_ == '>c' else dtype_ values = asarray(values, dtype=dtype_) self.fp.write(asbytes(nc_type)) if values.dtype.char == 'S': nelems = values.itemsize else: nelems = values.size self._pack_int(nelems) if not values.shape and (values.dtype.byteorder == '<' or (values.dtype.byteorder == '=' and LITTLE_ENDIAN)): values = values.byteswap() self.fp.write(values.tostring()) count = values.size * values.itemsize self.fp.write(b'0' * (-count % 4)) # pad