Python numpy.unsignedinteger() Examples
The following are 30
code examples of numpy.unsignedinteger().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_umath.py From recruit with Apache License 2.0 | 6 votes |
def _test_lcm_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.lcm(a, b), [60, 600]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.lcm(a, b), [60]*4) # reduce a = np.array([3, 12, 20], dtype=dtype) assert_equal(np.lcm.reduce([3, 12, 20]), 60) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
Example #2
Source File: test_umath.py From twitter-stock-recommendation with MIT License | 6 votes |
def _test_gcd_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.gcd(a, b), [4, 40]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.gcd(a, b), [4]*4) # reduce a = np.array([15, 25, 35], dtype=dtype) assert_equal(np.gcd.reduce(a), 5) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
Example #3
Source File: test_umath.py From twitter-stock-recommendation with MIT License | 6 votes |
def _test_lcm_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.lcm(a, b), [60, 600]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.lcm(a, b), [60]*4) # reduce a = np.array([3, 12, 20], dtype=dtype) assert_equal(np.lcm.reduce([3, 12, 20]), 60) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
Example #4
Source File: test_umath.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _test_gcd_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.gcd(a, b), [4, 40]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.gcd(a, b), [4]*4) # reduce a = np.array([15, 25, 35], dtype=dtype) assert_equal(np.gcd.reduce(a), 5) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
Example #5
Source File: test_umath.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _test_lcm_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.lcm(a, b), [60, 600]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.lcm(a, b), [60]*4) # reduce a = np.array([3, 12, 20], dtype=dtype) assert_equal(np.lcm.reduce([3, 12, 20]), 60) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
Example #6
Source File: test_umath.py From coffeegrindsize with MIT License | 6 votes |
def _test_gcd_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.gcd(a, b), [4, 40]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.gcd(a, b), [4]*4) # reduce a = np.array([15, 25, 35], dtype=dtype) assert_equal(np.gcd.reduce(a), 5) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
Example #7
Source File: test_umath.py From coffeegrindsize with MIT License | 6 votes |
def _test_lcm_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.lcm(a, b), [60, 600]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.lcm(a, b), [60]*4) # reduce a = np.array([3, 12, 20], dtype=dtype) assert_equal(np.lcm.reduce([3, 12, 20]), 60) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
Example #8
Source File: test_umath.py From pySINDy with MIT License | 6 votes |
def _test_gcd_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.gcd(a, b), [4, 40]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.gcd(a, b), [4]*4) # reduce a = np.array([15, 25, 35], dtype=dtype) assert_equal(np.gcd.reduce(a), 5) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
Example #9
Source File: test_umath.py From pySINDy with MIT License | 6 votes |
def _test_lcm_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.lcm(a, b), [60, 600]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.lcm(a, b), [60]*4) # reduce a = np.array([3, 12, 20], dtype=dtype) assert_equal(np.lcm.reduce([3, 12, 20]), 60) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
Example #10
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _test_gcd_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.gcd(a, b), [4, 40]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.gcd(a, b), [4]*4) # reduce a = np.array([15, 25, 35], dtype=dtype) assert_equal(np.gcd.reduce(a), 5) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
Example #11
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _test_lcm_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.lcm(a, b), [60, 600]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.lcm(a, b), [60]*4) # reduce a = np.array([3, 12, 20], dtype=dtype) assert_equal(np.lcm.reduce([3, 12, 20]), 60) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
Example #12
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _test_gcd_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.gcd(a, b), [4, 40]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.gcd(a, b), [4]*4) # reduce a = np.array([15, 25, 35], dtype=dtype) assert_equal(np.gcd.reduce(a), 5) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
Example #13
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _test_lcm_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.lcm(a, b), [60, 600]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.lcm(a, b), [60]*4) # reduce a = np.array([3, 12, 20], dtype=dtype) assert_equal(np.lcm.reduce([3, 12, 20]), 60) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
Example #14
Source File: test_umath.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def _test_gcd_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.gcd(a, b), [4, 40]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.gcd(a, b), [4]*4) # reduce a = np.array([15, 25, 35], dtype=dtype) assert_equal(np.gcd.reduce(a), 5) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
Example #15
Source File: test_umath.py From recruit with Apache License 2.0 | 6 votes |
def _test_gcd_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.gcd(a, b), [4, 40]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.gcd(a, b), [4]*4) # reduce a = np.array([15, 25, 35], dtype=dtype) assert_equal(np.gcd.reduce(a), 5) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
Example #16
Source File: test_umath.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def _test_lcm_inner(self, dtype): # basic use a = np.array([12, 120], dtype=dtype) b = np.array([20, 200], dtype=dtype) assert_equal(np.lcm(a, b), [60, 600]) if not issubclass(dtype, np.unsignedinteger): # negatives are ignored a = np.array([12, -12, 12, -12], dtype=dtype) b = np.array([20, 20, -20, -20], dtype=dtype) assert_equal(np.lcm(a, b), [60]*4) # reduce a = np.array([3, 12, 20], dtype=dtype) assert_equal(np.lcm.reduce([3, 12, 20]), 60) # broadcasting, and a test including 0 a = np.arange(6).astype(dtype) b = 20 assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
Example #17
Source File: file_checker.py From buzzard with Apache License 2.0 | 6 votes |
def _checksum(fname, buffer_size=512 * 1024, dtype='uint64'): # https://github.com/airware/buzzard/pull/39/#discussion_r239071556 dtype = np.dtype(dtype) dtypesize = dtype.itemsize assert buffer_size % dtypesize == 0 assert np.issubdtype(dtype, np.unsignedinteger) acc = dtype.type(0) with open(fname, "rb") as f: with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore', r'overflow encountered') for chunk in iter(lambda: f.read(buffer_size), b""): head = np.frombuffer(chunk, dtype, count=len(chunk) // dtypesize) head = np.add.reduce(head, dtype=dtype, initial=acc) acc += head tailsize = len(chunk) % dtypesize if tailsize > 0: # This should only be needed for file's tail tail = chunk[-tailsize:] + b'\0' * (dtypesize - tailsize) tail = np.frombuffer(tail, dtype) acc += tail return '{:016x}'.format(acc.item())
Example #18
Source File: writer.py From buzzard with Apache License 2.0 | 6 votes |
def _checksum(fname, buffer_size=512 * 1024, dtype='uint64'): # https://github.com/airware/buzzard/pull/39/#discussion_r239071556 dtype = np.dtype(dtype) dtypesize = dtype.itemsize assert buffer_size % dtypesize == 0 assert np.issubdtype(dtype, np.unsignedinteger) acc = dtype.type(0) with open(fname, "rb") as f: with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore', r'overflow encountered') for chunk in iter(lambda: f.read(buffer_size), b""): head = np.frombuffer(chunk, dtype, count=len(chunk) // dtypesize) head = np.add.reduce(head, dtype=dtype, initial=acc) acc += head tailsize = len(chunk) % dtypesize if tailsize > 0: # This should only be needed for file's tail tail = chunk[-tailsize:] + b'\0' * (dtypesize - tailsize) tail = np.frombuffer(tail, dtype) acc += tail return '{:016x}'.format(acc.item())
Example #19
Source File: test_abc.py From coffeegrindsize with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #20
Source File: data_schemas.py From lale with Apache License 2.0 | 5 votes |
def dtype_to_schema(typ): result = None if typ is bool or np.issubdtype(typ, np.bool_): result = {'type': 'boolean'} elif np.issubdtype(typ, np.unsignedinteger): result = {'type': 'integer', 'minimum': 0} elif np.issubdtype(typ, np.integer): result = {'type': 'integer'} elif np.issubdtype(typ, np.number): result = {'type': 'number'} elif np.issubdtype(typ, np.string_) or np.issubdtype(typ, np.unicode_): result = {'type': 'string'} elif isinstance(typ, np.dtype): if typ.fields: props = {k: dtype_to_schema(t) for k, t in typ.fields.items()} result = {'type': 'object', 'properties': props} elif typ.shape: result = shape_and_dtype_to_schema(typ.shape, typ.subdtype) elif np.issubdtype(typ, np.object_): result = {'type': 'string'} else: assert False, f'unexpected dtype {typ}' else: assert False, f'unexpected non-dtype {typ}' lale.type_checking.validate_is_schema(result) return result
Example #21
Source File: numeric.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as uints. """ if not issubclass(data.dtype.type, np.unsignedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast')
Example #22
Source File: measurements.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _safely_castable_to_int(dt): """Test whether the numpy data type `dt` can be safely cast to an int.""" int_size = np.dtype(int).itemsize safe = ((np.issubdtype(dt, int) and dt.itemsize <= int_size) or (np.issubdtype(dt, np.unsignedinteger) and dt.itemsize < int_size)) return safe
Example #23
Source File: numpngw.py From numpngw with BSD 2-Clause "Simplified" License | 5 votes |
def _validate_array(a): if a.ndim != 2: if a.ndim != 3 or a.shape[2] > 4 or a.shape[2] == 0: raise ValueError("array must be 2D, or 3D with shape " "(m, n, d) with 1 <= d <= 4.") itemsize = a.dtype.itemsize if not _np.issubdtype(a.dtype, _np.unsignedinteger) or itemsize > 2: raise ValueError("array must be an array of 8- or 16-bit " "unsigned integers") # Notes on color_type: # # color_type meaning tRNS chunk contents (optional) # ---------- ------------------------ -------------------------------- # 0 grayscale Single gray level value, 2 bytes # 2 RGB Single RGB, 2 bytes per channel # 3 8 bit indexed RGB or RGBA Series of 1 byte alpha values # 4 Grayscale and alpha # 6 RGBA # # # from http://www.w3.org/TR/PNG/: # Table 11.1 - Allowed combinations of colour type and bit depth # # Color Allowed # PNG image type type bit depths Interpretation # Greyscale 0 1, 2, 4, 8, 16 Each pixel is a greyscale # sample # Truecolour 2 8, 16 Each pixel is an RGB triple # Indexed-colour 3 1, 2, 4, 8 Each pixel is a palette index; # a PLTE chunk shall appear. # Greyscale with alpha 4 8, 16 Each pixel is a greyscale # sample followed by an alpha # sample. # Truecolour with alpha 6 8, 16 Each pixel is an RGB triple # followed by an alpha sample.
Example #24
Source File: numeric.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as uints. """ if not issubclass(data.dtype.type, np.unsignedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast')
Example #25
Source File: common.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def is_unsigned_integer_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of an unsigned integer dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of an unsigned integer dtype. Examples -------- >>> is_unsigned_integer_dtype(str) False >>> is_unsigned_integer_dtype(int) # signed False >>> is_unsigned_integer_dtype(float) False >>> is_unsigned_integer_dtype(np.uint64) True >>> is_unsigned_integer_dtype(np.array(['a', 'b'])) False >>> is_unsigned_integer_dtype(pd.Series([1, 2])) # signed False >>> is_unsigned_integer_dtype(pd.Index([1, 2.])) # float False >>> is_unsigned_integer_dtype(np.array([1, 2], dtype=np.uint32)) True """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return (issubclass(tipo, np.unsignedinteger) and not issubclass(tipo, (np.datetime64, np.timedelta64)))
Example #26
Source File: _parse.py From sklearn-onnx with MIT License | 5 votes |
def _parse_sklearn_classifier(scope, model, inputs, custom_parsers=None): probability_tensor = _parse_sklearn_simple_model( scope, model, inputs, custom_parsers=custom_parsers) if model.__class__ in [NuSVC, SVC] and not model.probability: return probability_tensor options = scope.get_options(model, dict(zipmap=True)) if not options['zipmap']: return probability_tensor this_operator = scope.declare_local_operator('SklearnZipMap') this_operator.inputs = probability_tensor label_type = Int64TensorType([None]) classes = get_label_classes(scope, model) if (isinstance(model.classes_, list) and isinstance(model.classes_[0], np.ndarray)): # multi-label problem pass elif np.issubdtype(classes.dtype, np.floating): classes = np.array(list(map(lambda x: int(x), classes))) if set(map(lambda x: float(x), classes)) != set(model.classes_): raise RuntimeError("skl2onnx implicitly converts float class " "labels into integers but at least one label " "is not an integer. Class labels should " "be integers or strings.") this_operator.classlabels_int64s = classes elif np.issubdtype(classes.dtype, np.signedinteger): this_operator.classlabels_int64s = classes elif np.issubdtype(classes.dtype, np.unsignedinteger): this_operator.classlabels_int64s = classes else: classes = np.array([s.encode('utf-8') for s in classes]) this_operator.classlabels_strings = classes label_type = StringTensorType([None]) output_label = scope.declare_local_variable('output_label', label_type) output_probability = scope.declare_local_variable( 'output_probability', SequenceType(DictionaryType(label_type, scope.tensor_type()))) this_operator.outputs.append(output_label) this_operator.outputs.append(output_probability) return this_operator.outputs
Example #27
Source File: common.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def is_unsigned_integer_dtype(arr_or_dtype): """ Check whether the provided array or dtype is of an unsigned integer dtype. Parameters ---------- arr_or_dtype : array-like The array or dtype to check. Returns ------- boolean : Whether or not the array or dtype is of an unsigned integer dtype. Examples -------- >>> is_unsigned_integer_dtype(str) False >>> is_unsigned_integer_dtype(int) # signed False >>> is_unsigned_integer_dtype(float) False >>> is_unsigned_integer_dtype(np.uint64) True >>> is_unsigned_integer_dtype(np.array(['a', 'b'])) False >>> is_unsigned_integer_dtype(pd.Series([1, 2])) # signed False >>> is_unsigned_integer_dtype(pd.Index([1, 2.])) # float False >>> is_unsigned_integer_dtype(np.array([1, 2], dtype=np.uint32)) True """ if arr_or_dtype is None: return False tipo = _get_dtype_type(arr_or_dtype) return (issubclass(tipo, np.unsignedinteger) and not issubclass(tipo, (np.datetime64, np.timedelta64)))
Example #28
Source File: test_abc.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))
Example #29
Source File: numeric.py From recruit with Apache License 2.0 | 5 votes |
def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as uints. """ if not issubclass(data.dtype.type, np.unsignedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast')
Example #30
Source File: test_abc.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_abstract(self): assert_(issubclass(np.number, numbers.Number)) assert_(issubclass(np.inexact, numbers.Complex)) assert_(issubclass(np.complexfloating, numbers.Complex)) assert_(issubclass(np.floating, numbers.Real)) assert_(issubclass(np.integer, numbers.Integral)) assert_(issubclass(np.signedinteger, numbers.Integral)) assert_(issubclass(np.unsignedinteger, numbers.Integral))