Python numpy.RankWarning() Examples

The following are 5 code examples of numpy.RankWarning(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy , or try the search function .
Example #1
Source File: stats.py    From faceswap with GNU General Public License v3.0 6 votes vote down vote up
def __init__(self, session, display="loss", loss_keys=["loss"], selections=["raw"],
                 avg_samples=500, smooth_amount=0.90, flatten_outliers=False, is_totals=False):
        logger.debug("Initializing %s: (session: %s, display: %s, loss_keys: %s, selections: %s, "
                     "avg_samples: %s, smooth_amount: %s, flatten_outliers: %s, is_totals: %s",
                     self.__class__.__name__, session, display, loss_keys, selections, avg_samples,
                     smooth_amount, flatten_outliers, is_totals)

        warnings.simplefilter("ignore", np.RankWarning)

        self.session = session
        self.display = display
        self.loss_keys = loss_keys
        self.selections = selections
        self.is_totals = is_totals
        self.args = {"avg_samples": avg_samples,
                     "smooth_amount": smooth_amount,
                     "flatten_outliers": flatten_outliers}
        self.iterations = 0
        self.stats = None
        self.refresh()
        logger.debug("Initialized %s", self.__class__.__name__) 
Example #2
Source File: transposer.py    From artisan with GNU General Public License v3.0 5 votes vote down vote up
def calcTimeResults(self):
        res = []
        if self.aw.qmc.transMappingMode == 0:
            # discrete mapping
            # adding CHARGE
            fits = self.calcDiscretefits([0] + self.profileTimes,[0] + self.targetTimes)
            for i in range(4):
                if self.profileTimes[i] is not None and fits[i+1] is not None:
                    res.append(numpy.poly1d(fits[i+1])(self.profileTimes[i]))
                else:
                    res.append(None)
        else:
            with warnings.catch_warnings():
                warnings.filterwarnings('error')
                try:
                    fit = self.calcTimePolyfit() # that that this fit is already applied to numpy.polyfit !!
                    for i in range(4):
                        if fit is not None and self.profileTimes[i] is not None:
                            res.append(fit(self.profileTimes[i]))
                        else:
                            res.append(None)
                except numpy.RankWarning:
                    pass
                except:
                    pass
        return res

    # returns the list of results temperatures and the polyfit or None as second result 
Example #3
Source File: transposer.py    From artisan with GNU General Public License v3.0 4 votes vote down vote up
def calcTempResults(self):
        res = []
        fit = None
        if self.aw.qmc.transMappingMode == 0:
            # discrete mapping
            fits = self.calcDiscretefits(self.profileTemps,self.targetTemps)
            for i in range(5):
                if self.profileTemps[i] is not None and fits[i] is not None:
                    res.append(numpy.poly1d(fits[i])(self.profileTemps[i]))
                else:
                    res.append(None)
            active_fits = list(filter(lambda x: x[1][1] is not None,zip(fits,zip(self.profileTemps,self.targetTemps))))
            if len(active_fits) > 0 and len(active_fits) < 3:
                fit = self.aw.fit2str(fits[0])
            else:
                formula = ""
                last_target = None
                for f,tpl in reversed(active_fits[:-1]):
                    if last_target is None:
                        formula = self.aw.fit2str(f)
                    else:
                        formula = "({} if x<{} else {})".format(self.aw.fit2str(f), last_target, formula)
                    last_target = tpl[1]
                fit = formula
        else:
            with warnings.catch_warnings():
                warnings.filterwarnings('error')
                try:
                    fit = self.calcTempPolyfit() # numpy.poly1d not yet applied to this fit
                    p = numpy.poly1d(fit)
                    for i in range(5):
                        if fit is not None and self.profileTemps[i] is not None:
                            res.append(p(self.profileTemps[i]))
                        else:
                            res.append(None)
                except numpy.RankWarning:
                    pass
                except:
                    pass
        return res,fit
    
    # returns target times based on the phases target 
Example #4
Source File: transposer.py    From artisan with GNU General Public License v3.0 4 votes vote down vote up
def applyTimeTransformation(self):
        # first update the targets
        self.targetTimes = self.getTargetTimes()
        if all(v is None for v in self.targetTimes):
            target_times, target_phases = self.getTargetPhases()
            if all(v is None for v in target_times + target_phases):
                self.aw.qmc.timex = self.org_timex[:]
                self.aw.qmc.extratimex = copy.deepcopy(self.org_extratimex)
                return False
            else:
                self.targetTimes = self.getTargetPhasesTimes()
        # calculate the offset of 00:00
        offset = self.forgroundOffset()
        # apply either the discrete or the polyfit mappings
        if self.aw.qmc.transMappingMode == 0:
            # discrete mapping
            fits = self.calcDiscretefits([0] + self.profileTimes,[0] + self.targetTimes)
            self.aw.qmc.timex = self.applyDiscreteTimeMapping(self.org_timex,fits)
            # apply to the extra timex
            self.aw.qmc.extratimex = []
            for timex in self.org_extratimex:
                try:
                    timex_trans = self.applyDiscreteTimeMapping(timex,fits)
                except:
                    timex_trans = timex
                self.aw.qmc.extratimex.append(timex_trans)
        else:
            # polyfit mappings
            with warnings.catch_warnings():
                warnings.filterwarnings('error')
                try:
                    fit = self.calcTimePolyfit() # the fit returned here is already applied to numpy.poly1d
                    if fit is not None:
                        self.aw.qmc.timex = [fit(tx-offset) for tx in self.org_timex]
                        if len(self.aw.qmc.timex) > 0 and self.aw.qmc.timeindex[0] != -1:
                            foffset = self.aw.qmc.timex[0]
                            self.aw.qmc.timex = [tx+foffset for tx in self.aw.qmc.timex]
                        extratimex = []
                        for timex in self.org_extratimex:
                            offset = 0
                            if self.aw.qmc.timeindex[0] != -1:
                                offset = timex[self.aw.qmc.timeindex[0]]
                            new_timex = [fit(tx-offset) for tx in timex]
                            if len(new_timex) > 0 and self.aw.qmc.timeindex[0] != -1:
                                foffset = new_timex[0]
                                new_timex = [tx+foffset for tx in new_timex]
                            extratimex.append(new_timex)
                        self.aw.qmc.extratimex = extratimex
                except numpy.RankWarning:
                    pass
        return True
    
    # returns False if no transformation was applied 
Example #5
Source File: transposer.py    From artisan with GNU General Public License v3.0 4 votes vote down vote up
def applyTempTransformation(self):
        # first update the targets
        self.targetTemps = self.getTargetTemps()
        if all(v is None for v in self.targetTemps):
            self.aw.qmc.temp2 = self.org_temp2[:]
            return False
        # apply either the discrete or the polyfit mappings
        if self.aw.qmc.transMappingMode == 0:
            # discrete mappings, length 5
            fits = self.calcDiscretefits(self.profileTemps,self.targetTemps)
            self.aw.qmc.temp2 = []
            for i in range(len(self.org_temp2)):
                # first fit is to be applied for all readings before DRY
                j = 0
                if self.aw.qmc.timeindex[6] > 0 and i >= self.aw.qmc.timeindex[6]:
                    # last fit counts after DROP
                    j = 4
                elif self.aw.qmc.timeindex[4] > 0 and i >= self.aw.qmc.timeindex[4]:
                    j = 3 # after SCs
                elif self.aw.qmc.timeindex[2] > 0 and i >= self.aw.qmc.timeindex[2]:
                    j = 2 # after FCs
                elif self.aw.qmc.timeindex[1] > 0 and i >= self.aw.qmc.timeindex[1]:
                    j = 1 # after DRY
                fit = numpy.poly1d(fits[j]) # fit to be applied
                
                tp = self.org_temp2[i]
                if tp is None or tp == -1:
                    self.aw.qmc.temp2.append(tp)
                else:
                    self.aw.qmc.temp2.append(fit(tp))
            return True
        else:
            # polyfit mappings
            with warnings.catch_warnings():
                warnings.filterwarnings('error')
                try:
                    fit = numpy.poly1d(self.calcTempPolyfit())
                    if fit is not None:
                        self.aw.qmc.temp2 = [(-1 if (temp is None) or (temp == -1) else fit(temp)) for temp in self.org_temp2]
                except numpy.RankWarning:
                    pass
        return True
    
    # tables