Python numpy.__dict__() Examples
The following are 18
code examples of numpy.__dict__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: example_daq.py From spinmob with GNU General Public License v3.0 | 6 votes |
def get_fake_data(): # try to evaluate the source script try: # first get all the extra numpy globals g = _n.__dict__ # update these globals with extra stuff needed for evaluation g.update(dict(t=d1[0]+s["settings/simulated_input/noise"]*_n.random.rand())) y = eval(s["settings/simulated_input/source"], g)+_n.random.random(len(d1['t'])) # default to zeros except: print("ERROR: Invalid source script.") y = d1[0]*0.0 # pretend this acquisition actually took time (avoids black holes) _t.sleep(s["settings/simulated_input/duration"]) return y # define a function to be called whenever the acquire button is pressed
Example #2
Source File: _data.py From spinmob with GNU General Public License v3.0 | 6 votes |
def _globals(self): """ Returns the globals needed for eval() statements. """ # start with numpy globbies = dict(_n.__dict__) globbies.update(_special.__dict__) # update with required stuff globbies.update({'h':self.h, 'c':self.c, 'd':self, 'self':self}) # update with user stuff globbies.update(self.extra_globals) return globbies
Example #3
Source File: utils.py From rio-pansharpen with MIT License | 6 votes |
def _rescale(arr, ndv, dst_dtype, out_alpha=True): """Convert an array from output dtype, scaling up linearly """ if dst_dtype == np.__dict__['uint16']: scale = 1 else: # convert to 8bit value range in place scale = float(np.iinfo(np.uint16).max) / float(np.iinfo(np.uint8).max) res = (arr / scale).astype(dst_dtype) if out_alpha: mask = _simple_mask( arr.astype(dst_dtype), (ndv, ndv, ndv)).reshape( 1, arr.shape[1], arr.shape[2]) return np.concatenate([res, mask]) else: return res
Example #4
Source File: test_pansharp_unittest.py From rio-pansharpen with MIT License | 6 votes |
def test_pansharp_data(): b8_path = 'tests/fixtures/tiny_20_tiffs/LC81070352015122LGN00/'\ 'LC81070352015122LGN00_B8.tif' b4_path = 'tests/fixtures/tiny_20_tiffs/LC81070352015122LGN00/'\ 'LC81070352015122LGN00_B4.tif' b3_path = 'tests/fixtures/tiny_20_tiffs/LC81070352015122LGN00/'\ 'LC81070352015122LGN00_B3.tif' b2_path = 'tests/fixtures/tiny_20_tiffs/LC81070352015122LGN00/'\ 'LC81070352015122LGN00_B2.tif' band_paths = [b8_path, b4_path, b3_path, b2_path] pan_window = ((1536, 1792), (1280, 1536)) g_args = {'half_window': False, 'dst_aff': Affine(75.00483870967741, 0.0, 300892.5, 0.0, -75.00475285171103, 4107007.5), 'verb': False, 'weight': 0.2, 'dst_crs': {'init': u'epsg:32654'}, 'r_crs': {'init': u'epsg:32654'}, 'dst_dtype': np.__dict__['uint16'], 'r_aff': Affine(150.0193548387097, 0.0, 300885.0, 0.0, -150.0190114068441, 4107015.0), 'src_nodata': 0} return [rasterio.open(f) for f in band_paths],\ pan_window, (6, 5), g_args
Example #5
Source File: simpletable.py From pyphot with MIT License | 5 votes |
def evalexpr(self, expr, exprvars=None, dtype=float): """ evaluate expression based on the data and external variables all np function can be used (log, exp, pi...) Parameters ---------- expr: str expression to evaluate on the table includes mathematical operations and attribute names exprvars: dictionary, optional A dictionary that replaces the local operands in current frame. dtype: dtype definition dtype of the output array Returns ------- out : NumPy array array of the result """ _globals = {} for k in ( list(self.colnames) + list(self._aliases.keys()) ): if k in expr: _globals[k] = self[k] if exprvars is not None: if (not (hasattr(exprvars, 'keys') & hasattr(exprvars, '__getitem__' ))): raise AttributeError("Expecting a dictionary-like as condvars") for k, v in ( exprvars.items() ): _globals[k] = v # evaluate expression, to obtain the final filter r = np.empty( self.nrows, dtype=dtype) r[:] = eval(expr, _globals, np.__dict__) return r
Example #6
Source File: simpletable.py From TheCannon with MIT License | 5 votes |
def nbytes(self): """ number of bytes of the object """ n = sum(k.nbytes if hasattr(k, 'nbytes') else sys.getsizeof(k) for k in self.__dict__.values()) return n
Example #7
Source File: simpletable.py From pyphot with MIT License | 5 votes |
def nbytes(self): """ number of bytes of the object """ n = sum(k.nbytes if hasattr(k, 'nbytes') else sys.getsizeof(k) for k in self.__dict__.values()) return n
Example #8
Source File: simpletable.py From pyphot with MIT License | 5 votes |
def evalexpr(self, expr, exprvars=None, dtype=float): """ evaluate expression based on the data and external variables all np function can be used (log, exp, pi...) Parameters ---------- expr: str expression to evaluate on the table includes mathematical operations and attribute names exprvars: dictionary, optional A dictionary that replaces the local operands in current frame. dtype: dtype definition dtype of the output array Returns ------- out : NumPy array array of the result """ _globals = {} for k in ( list(self.colnames) + list(self._aliases.keys()) ): if k in expr: _globals[k] = self[k] if exprvars is not None: if (not (hasattr(exprvars, 'keys') & hasattr(exprvars, '__getitem__' ))): raise AttributeError("Expecting a dictionary-like as condvars") for k, v in ( exprvars.items() ): _globals[k] = v # evaluate expression, to obtain the final filter r = np.empty( self.nrows, dtype=dtype) r[:] = eval(expr, _globals, np.__dict__) return r
Example #9
Source File: simpletable.py From pyphot with MIT License | 5 votes |
def nbytes(self): """ number of bytes of the object """ n = sum(k.nbytes if hasattr(k, 'nbytes') else sys.getsizeof(k) for k in self.__dict__.values()) return n
Example #10
Source File: test_property_based.py From rio-pansharpen with MIT License | 5 votes |
def test_rescale(arr, ndv, dst_dtype): if dst_dtype == np.__dict__['uint16']: assert np.array_equal( _rescale(arr, ndv, dst_dtype), np.concatenate( [ (arr).astype(dst_dtype), _simple_mask( arr.astype(dst_dtype), (ndv, ndv, ndv) ).reshape(1, arr.shape[1], arr.shape[2]) ] ) ) else: assert np.array_equal( _rescale(arr, ndv, dst_dtype), np.concatenate( [ (arr / 257.0).astype(dst_dtype), _simple_mask( arr.astype(dst_dtype), (ndv, ndv, ndv) ).reshape(1, arr.shape[1], arr.shape[2]) ] ) ) # Testing make_windows_block function's random element
Example #11
Source File: test_pansharp_unittest.py From rio-pansharpen with MIT License | 5 votes |
def test_pansharpen_worker_uint8(test_pansharp_data): open_files, pan_window, _, g_args = test_pansharp_data g_args.update(dst_dtype=np.__dict__['uint8']) pan_output = _pansharpen_worker(open_files, pan_window, _, g_args) assert pan_output.dtype == np.uint8 assert np.max(pan_output) <= 2**8
Example #12
Source File: sympy.py From qupulse with MIT License | 5 votes |
def substitute_with_eval(expression: sympy.Expr, substitutions: Dict[str, Union[sympy.Expr, numpy.ndarray, str]]) -> sympy.Expr: """Substitutes only sympy.Symbols. Workaround for numpy like array behaviour. ~Factor 3 slower compared to subs""" substitutions = {k: v if isinstance(v, sympy.Expr) else sympify(v) for k, v in substitutions.items()} for symbol in get_free_symbols(expression): symbol_name = str(symbol) if symbol_name not in substitutions: substitutions[symbol_name] = symbol string_representation = sympy.srepr(expression) return eval(string_representation, sympy.__dict__, {'Symbol': substitutions.__getitem__, 'Mul': numpy_compatible_mul})
Example #13
Source File: test_structure.py From pylada-light with GNU General Public License v3.0 | 5 votes |
def test_representability(): import quantities import numpy dictionary = {Structure.__name__: Structure} dictionary.update(numpy.__dict__) dictionary.update(quantities.__dict__) expected = Structure() actual = eval(repr(expected), dictionary) assert all(abs(expected.cell - actual.cell) < 1e-8) assert abs(expected.scale - actual.scale) < 1e-8 assert len(expected) == len(actual) expected = Structure([1, 2, 0], [3, 4, 5], [6, 7, 8], m=True) actual = eval(repr(expected), dictionary) assert all(abs(expected.cell - actual.cell) < 1e-8) assert abs(expected.scale - actual.scale) < 1e-8 assert len(expected) == len(actual) assert getattr(expected, 'm', False) == actual.m expected = Structure([1, 2, 0], [3, 4, 5], [6, 7, 8], m=True) \ .add_atom(0, 1, 2, "Au", m=5) \ .add_atom(0, -1, -2, "Pd") actual = eval(repr(expected), dictionary) assert all(abs(expected.cell - actual.cell) < 1e-8) assert abs(expected.scale - actual.scale) < 1e-8 assert len(expected) == len(actual) assert all(abs(expected[0].pos - actual[0].pos) < 1e-8) assert getattr(expected[0], 'm', 0) == actual[0].m assert expected[0].type == actual[0].type assert all(abs(expected[1].pos - actual[1].pos) < 1e-8) assert expected[1].type == actual[1].type assert getattr(expected, 'm', False) == actual.m
Example #14
Source File: test_structure.py From pylada-light with GNU General Public License v3.0 | 5 votes |
def test_initialization(): """ Test structure initialization. """ a = Structure() assert all(abs(a.cell - identity(3)) < 1e-8) assert abs(a.scale - 1e0 * angstrom) < 1e0 assert len(a.__dict__) == 3 a = Structure(identity(3) * 2.5, scale=5.45) assert all(abs(a.cell - identity(3) * 2.5) < 1e-8) assert abs(a.scale - 5.45 * angstrom) < 1e0 assert len(a.__dict__) == 3 a = Structure(identity(3) * 2.5, scale=0.545 * nanometer) assert all(abs(a.cell - identity(3) * 2.5) < 1e-8) assert abs(a.scale - 5.45 * angstrom) < 1e0 assert len(a.__dict__) == 3 a = Structure(2.5, 0, 0, 0, 2.5, 0, 0, 0, 2.5, scale=5.45) assert all(abs(a.cell - identity(3) * 2.5) < 1e-8) assert abs(a.scale - 5.45 * angstrom) < 1e0 assert len(a.__dict__) == 3 a = Structure([2.5, 0, 0], [0, 2.5, 0], [0, 0, 2.5], scale=5.45) assert all(abs(a.cell - identity(3) * 2.5) < 1e-8) assert abs(a.scale - 5.45 * angstrom) < 1e0 assert len(a.__dict__) == 3 a = Structure(cell=[[2.5, 0, 0], [0, 2.5, 0], [0, 0, 2.5]], scale=5.45) assert all(abs(a.cell - identity(3) * 2.5) < 1e-8) assert abs(a.scale - 5.45 * angstrom) < 1e0 assert len(a.__dict__) == 3 a = Structure(identity(3) * 2.5, scale=5.45, m=True) assert all(abs(a.cell - identity(3) * 2.5) < 1e-8) assert abs(a.scale - 5.45 * angstrom) < 1e0 assert len(a.__dict__) == 4 and getattr(a, 'm', False)
Example #15
Source File: simpletable.py From TheCannon with MIT License | 5 votes |
def evalexpr(self, expr, exprvars=None, dtype=float): """ evaluate expression based on the data and external variables all np function can be used (log, exp, pi...) Parameters ---------- expr: str expression to evaluate on the table includes mathematical operations and attribute names exprvars: dictionary, optional A dictionary that replaces the local operands in current frame. dtype: dtype definition dtype of the output array Returns ------- out : NumPy array array of the result """ _globals = {} for k in ( list(self.colnames) + list(self._aliases.keys()) ): if k in expr: _globals[k] = self[k] if exprvars is not None: if (not (hasattr(exprvars, 'keys') & hasattr(exprvars, '__getitem__' ))): raise AttributeError("Expecting a dictionary-like as condvars") for k, v in ( exprvars.items() ): _globals[k] = v # evaluate expression, to obtain the final filter r = np.empty( self.nrows, dtype=dtype) r[:] = eval(expr, _globals, np.__dict__) return r
Example #16
Source File: compare.py From bootstrap.pytorch with BSD 3-Clause "New" or "Revised" License | 4 votes |
def load_values(dir_logs, metrics, nb_epochs=-1, best=None): json_files = {} values = {} # load argsup of best if best: if best['json'] not in json_files: with open(osp.join(dir_logs, f'{best["json"]}.json')) as f: json_files[best['json']] = json.load(f) jfile = json_files[best['json']] vals = jfile[best['name']] end = len(vals) if nb_epochs == -1 else nb_epochs argsup = np.__dict__[f'arg{best["order"]}'](vals[:end]) # load logs for _key, metric in metrics.items(): # open json_files if metric['json'] not in json_files: with open(osp.join(dir_logs, f'{metric["json"]}.json')) as f: json_files[metric['json']] = json.load(f) jfile = json_files[metric['json']] if 'train' in metric['name']: epoch_key = 'train_epoch.epoch' else: epoch_key = 'eval_epoch.epoch' if epoch_key in jfile: epochs = jfile[epoch_key] else: epochs = jfile['epoch'] vals = jfile[metric['name']] if not best: end = len(vals) if nb_epochs == -1 else nb_epochs argsup = np.__dict__[f'arg{metric["order"]}'](vals[:end]) try: values[metric['name']] = epochs[argsup], vals[argsup] except IndexError: values[metric['name']] = epochs[argsup - 1], vals[argsup - 1] return values
Example #17
Source File: simpletable.py From pyphot with MIT License | 4 votes |
def select(self, fields, indices=None, **kwargs): """ Select only a few fields in the table Parameters ---------- fields: str or sequence fields to keep in the resulting table indices: sequence or slice extract only on these indices returns ------- tab: SimpleTable instance resulting table """ _fields = self.keys(fields) if fields == '*': if indices is None: return self else: tab = self.__class__(self[indices]) for k in self.__dict__.keys(): if k not in ('data', ): setattr(tab, k, deepcopy(self.__dict__[k])) return tab else: d = {} for k in _fields: _k = self.resolve_alias(k) if indices is not None: d[k] = self[_k][indices] else: d[k] = self[_k] d['header'] = deepcopy(self.header) tab = self.__class__(d) for k in self.__dict__.keys(): if k not in ('data', ): setattr(tab, k, deepcopy(self.__dict__[k])) return tab
Example #18
Source File: simpletable.py From TheCannon with MIT License | 4 votes |
def select(self, fields, indices=None, **kwargs): """ Select only a few fields in the table Parameters ---------- fields: str or sequence fields to keep in the resulting table indices: sequence or slice extract only on these indices returns ------- tab: SimpleTable instance resulting table """ _fields = self.keys(fields) if fields == '*': if indices is None: return self else: tab = self.__class__(self[indices]) for k in self.__dict__.keys(): if k not in ('data', ): setattr(tab, k, deepcopy(self.__dict__[k])) return tab else: d = {} for k in _fields: _k = self.resolve_alias(k) if indices is not None: d[k] = self[_k][indices] else: d[k] = self[_k] d['header'] = deepcopy(self.header) tab = self.__class__(d) for k in self.__dict__.keys(): if k not in ('data', ): setattr(tab, k, deepcopy(self.__dict__[k])) return tab