Python numpy.inv() Examples
The following are 5
code examples of numpy.inv().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: contact.py From pyOptimalMotionPlanning with Apache License 2.0 | 6 votes |
def invMassMatrix(obj): """Returns the inverse of obj's generalized mass matrix [H 0 ]-1 [0 mI] about the origin.""" Hinv = numpy.zeros((6,6)) if obj == None or isinstance(obj,TerrainModel): #infinite inertia return Hinv if isinstance(obj,RobotModel): return obj.getMassMatrixInv() m = obj.getMass() minv = 1.0/m.mass Hinv[3,3]=Hinv[4,4]=Hinv[5,5]=minv #offset the inertia matrix about the COM H = numpy.array((3,3)) H[0,:] = numpy.array(m.inertia[0:3]) H[1,:] = numpy.array(m.inertia[3:6]) H[2,:] = numpy.array(m.inertia[6:9]) H -= skew(m.com)*skew(m.com)*m.mass Hinv[0:3,0:3] = numpy.inv(H) return Hinv
Example #2
Source File: reconstruction.py From soapy with GNU General Public License v3.0 | 6 votes |
def calcCMat(self, callback=None, progressCallback=None): nSlopes = self.wfss[0].activeSubaps*2 self.controlShape = (nSlopes, self.sim_config.totalActs) self.controlMatrix = numpy.zeros((nSlopes, self.sim_config.totalActs)) acts = 0 for dm in xrange(self.sim_config.nDM): dmIMat = self.dms[dm].iMat if dmIMat.shape[0]==dmIMat.shape[1]: dmCMat = numpy.inv(dmIMat) else: dmCMat = numpy.linalg.pinv(dmIMat, self.dmConds[dm]) self.controlMatrix[:,acts:acts+self.dms[dm].n_acts] = dmCMat acts += self.dms[dm].n_acts
Example #3
Source File: regressor.py From tf-encrypted with Apache License 2.0 | 5 votes |
def estimator_fn(cls, x_p, y_p): # Recall beta = np.inv(X.T @ X) * (X.T @ y) yy_p = tf.matmul(y_p, y_p, transpose_a=True) # per-party y.T @ y xy_p = tf.matmul(x_p, y_p, transpose_a=True) # per-party X.T @ y xx_p = tf.matmul(x_p, x_p, transpose_a=True) # per-party X.T @ X return yy_p, xy_p, xx_p
Example #4
Source File: regressor.py From tf-encrypted with Apache License 2.0 | 5 votes |
def fit(self, training_players, summary=0, validation_split=None): """Trains the linear regressor. Arguments: training_players: Data owners used for joint training. Must implement the compute_estimators as a tfe.local_computation. summary: Controls what kind of summary statistics are generated after the linear regression fit. validation_split: Mimics the behavior of the Keras validation_split kwarg. """ if validation_split is not None: raise NotImplementedError() partial_estimators = [ player.compute_estimators(self.estimator_fn) for player in training_players ] for attr, partial_estimator in zip(self.components, zip(*partial_estimators)): setattr(self, attr, tfe.add_n(partial_estimator)) with tfe.Session() as sess: for k in self.components: op = getattr(self, k) setattr(self, k, sess.run(op.reveal())) tf_graph = tf.Graph() with tf_graph.as_default(): self._inverted_covariate_square = tf.linalg.inv(self.covariate_square) self.coefficients = tf.matmul( self._inverted_covariate_square, self.covariate_label_product ) with tf.Session(graph=tf_graph) as sess: for k in ["_inverted_covariate_square", "coefficients"]: setattr(self, k, sess.run(getattr(self, k))) if not summary: return self return self.summarize(summary_level=summary)
Example #5
Source File: clutter_removal.py From passiveRadar with MIT License | 4 votes |
def LS_Filter(refChannel, srvChannel, filterLen, reg=1.0, peek=10, return_filter=False): '''Block least squares adaptive filter. Computes filter taps using the direct matrix inversion method. Parameters: refChannel: Array containing the reference channel signal srvChannel: Array containing the surveillance channel signal filterLen: Length of the least squares filter (in samples) reg: L2 regularization parameter for the matrix inversion (default 1.0) peek: Number of noncausal filter taps. Set to zero for a causal filter. If nonzero, clutter estimates can depend on future values of the reference signal (this helps sometimes) return_filter: Boolean indicating whether to return the filter taps Returns: srvChannelFiltered: Surveillance channel signal with clutter removed filterTaps: (optional) least squares filter taps ''' if refChannel.shape != srvChannel.shape: raise ValueError('Input vectors must have the same length') lags = np.arange(-1*peek, filterLen) # Create a matrix of time-shited copies of the reference channel signal A = np.zeros((refChannel.shape[0], filterLen+peek), dtype=np.complex64) for k in range(lags.shape[0]): A[:, k] = np.roll(refChannel, lags[k]) # compute the autocorrelation matrix of ref ATA = A.conj().T @ A # create the Tikhonov regularization matrix K = np.eye(ATA.shape[0], dtype=np.complex64) # solve the least squares problem filterTaps = np.linalg.solve(ATA + K*reg, A.conj().T @ srvChannel) # direct but slightly slower implementation: # filterTaps = np.inv(ATA + K*reg) @ A.conj().T @ srvChannel # Apply the least squares filter to the surveillance channel srvChannelFiltered = srvChannel - A @ filterTaps if return_filter: return srvChannelFiltered, filterTaps else: return srvChannelFiltered