Python nibabel.quaternions.quat2mat() Examples

The following are 17 code examples of nibabel.quaternions.quat2mat(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module nibabel.quaternions , or try the search function .
Example #1
Source File: eulerangles.py    From Pointnet_Pointnet2_pytorch with MIT License 6 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`
    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion
    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)
    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #2
Source File: eulerangles.py    From scanobjectnn with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : no_dropout element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #3
Source File: eulerangles.py    From JSNet with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #4
Source File: eulerangles.py    From ldgcnn with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #5
Source File: eulerangles.py    From pcrnet with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #6
Source File: eulerangles.py    From deep_gcns with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #7
Source File: eulerangles.py    From PointCNN.Pytorch with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #8
Source File: eulerangles.py    From CalibNet with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #9
Source File: eulerangles.py    From scanobjectnn with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #10
Source File: eulerangles.py    From scanobjectnn with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #11
Source File: eulerangles.py    From pointnet-registration-framework with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #12
Source File: eulerangles.py    From scanobjectnn with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #13
Source File: eulerangles.py    From dfc2019 with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #14
Source File: eulerangles.py    From SGPN with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #15
Source File: eulerangles.py    From AlignNet-3D with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #16
Source File: eulerangles.py    From ASIS with MIT License 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q)) 
Example #17
Source File: eulerangles.py    From me-ica with GNU Lesser General Public License v2.1 5 votes vote down vote up
def quat2euler(q):
    ''' Return Euler angles corresponding to quaternion `q`

    Parameters
    ----------
    q : 4 element sequence
       w, x, y, z of quaternion

    Returns
    -------
    z : scalar
       Rotation angle in radians around z-axis (performed first)
    y : scalar
       Rotation angle in radians around y-axis
    x : scalar
       Rotation angle in radians around x-axis (performed last)

    Notes
    -----
    It's possible to reduce the amount of calculation a little, by
    combining parts of the ``quat2mat`` and ``mat2euler`` functions, but
    the reduction in computation is small, and the code repetition is
    large.
    '''
    # delayed import to avoid cyclic dependencies
    import nibabel.quaternions as nq
    return mat2euler(nq.quat2mat(q))