Python caffe2.python.core.DeviceOption() Examples
The following are 30
code examples of caffe2.python.core.DeviceOption().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
caffe2.python.core
, or try the search function
.
Example #1
Source File: test_spatial_narrow_as_op.py From NucleiDetectron with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #2
Source File: test_spatial_narrow_as_op.py From KL-Loss with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #3
Source File: model_loader.py From VMZ with Apache License 2.0 | 6 votes |
def BroacastParameters(model, src_gpu, gpus): log.info("Broadcasting parameters from gpu {} to gpu: {}".format( src_gpu, ','.join([str(g) for g in gpus])) ) for param in model.params: if 'gpu_{}'.format(gpus[0]) in str(param): for i in gpus: blob = workspace.FetchBlob(str(param)) target_blob_name = str(param).replace( 'gpu_{}'.format(src_gpu), 'gpu_{}'.format(i) ) log.info('broadcast {} -> {}'.format( str(param), target_blob_name) ) workspace.FetchBlob(str(param)) with core.DeviceScope( core.DeviceOption(caffe2_pb2.CUDA, i)): workspace.FeedBlob(target_blob_name, blob)
Example #4
Source File: test_spatial_narrow_as_op.py From masktextspotter.caffe2 with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #5
Source File: dataloader.py From video-long-term-feature-banks with Apache License 2.0 | 6 votes |
def enqueue_blobs( self, gpu_id, enqueue_blobs_names, blob_values, ): enqueue_blobs_names = [ 'gpu_{}/{}'.format( gpu_id, enqueue_blob_name ) for enqueue_blob_name in enqueue_blobs_names ] deviceOption = core.DeviceOption(caffe2_pb2.CUDA, gpu_id) for (blob_name, blob) in zip(enqueue_blobs_names, blob_values): workspace.FeedBlob(blob_name, blob, device_option=deviceOption) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) workspace.RunOperatorOnce( core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + enqueue_blobs_names, enqueue_blobs_names + [queue_name + '_enqueue_status'], device_option=deviceOption, ) )
Example #6
Source File: test_spatial_narrow_as_op.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #7
Source File: test_spatial_narrow_as_op.py From seg_every_thing with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #8
Source File: test_batch_permutation_op.py From seg_every_thing with Apache License 2.0 | 6 votes |
def _run_op_test(self, X, I, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', X) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = X[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08)
Example #9
Source File: test_batch_permutation_op.py From masktextspotter.caffe2 with Apache License 2.0 | 6 votes |
def _run_op_test(self, X, I, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', X) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = X[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08)
Example #10
Source File: test_spatial_narrow_as_op.py From Detectron-Cascade-RCNN with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #11
Source File: test_spatial_narrow_as_op.py From Detectron with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #12
Source File: test_spatial_narrow_as_op.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #13
Source File: test_spatial_narrow_as_op.py From CBNet with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #14
Source File: model.py From dlcookbook-dlbs with Apache License 2.0 | 6 votes |
def get_device_option(gpu=None): """Constructs `core.DeviceOption` object :param int gpu: Identifier of GPU to use or None for CPU. :return: Instance of `core.DeviceOption`. """ dev_opt = None if gpu is None: dev_opt = core.DeviceOption(caffe2_pb2.CPU) else: assert workspace.has_gpu_support, "Workspace does not support GPUs" assert gpu >= 0 and gpu < workspace.NumCudaDevices(),\ "Workspace does not provide this gpu (%d). "\ "Number of GPUs is %d" % (gpu, workspace.NumCudaDevices()) dev_opt = core.DeviceOption(caffe2_pb2.CUDA, gpu) return dev_opt
Example #15
Source File: c2.py From Detectron with Apache License 2.0 | 5 votes |
def CpuScope(): """Create a CPU device scope.""" cpu_dev = core.DeviceOption(caffe2_pb2.CPU) with core.DeviceScope(cpu_dev): yield
Example #16
Source File: test_smooth_l1_loss_op.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def test_forward_and_gradient(self): Y = np.random.randn(128, 4 * 21).astype(np.float32) Y_hat = np.random.randn(128, 4 * 21).astype(np.float32) inside_weights = np.random.randn(128, 4 * 21).astype(np.float32) inside_weights[inside_weights < 0] = 0 outside_weights = np.random.randn(128, 4 * 21).astype(np.float32) outside_weights[outside_weights < 0] = 0 scale = np.random.random() beta = np.random.random() op = core.CreateOperator( 'SmoothL1Loss', ['Y_hat', 'Y', 'inside_weights', 'outside_weights'], ['loss'], scale=scale, beta=beta ) gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple( op, [Y_hat, Y, inside_weights, outside_weights], 0, [0] ) self.assertTrue( grad.shape == grad_estimated.shape, 'Fail check: grad.shape != grad_estimated.shape' ) # To inspect the gradient and estimated gradient: # np.set_printoptions(precision=3, suppress=True) # print('grad:') # print(grad) # print('grad_estimated:') # print(grad_estimated) self.assertTrue(res)
Example #17
Source File: test_loader.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def run_net(net): workspace.RunNetOnce(net) gpu_dev = core.DeviceOption(caffe2_pb2.CUDA, 0) name_scope = 'gpu_{}'.format(0) with core.NameScope(name_scope): with core.DeviceScope(gpu_dev): data = workspace.FetchBlob(core.ScopedName('data')) return data
Example #18
Source File: model_convert_utils.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def get_device_option_cuda(gpu_id=0): device_option = caffe2_pb2.DeviceOption() device_option.device_type = caffe2_pb2.CUDA device_option.cuda_gpu_id = gpu_id return device_option
Example #19
Source File: model_convert_utils.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def get_device_option_cpu(): device_option = core.DeviceOption(caffe2_pb2.CPU) return device_option
Example #20
Source File: test_batch_permutation_op.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def test_size_exceptions(self): A = np.random.randn(2, 256, 42, 86).astype(np.float32) I = np.array(np.random.permutation(10), dtype=np.int32) with self.assertRaises(RuntimeError): self._run_op_test(A, I) # See doc string in _run_speed_test # def test_perf(self): # with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): # self._run_speed_test()
Example #21
Source File: c2.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def CpuScope(): """Create a CPU device scope.""" cpu_dev = core.DeviceOption(caffe2_pb2.CPU) with core.DeviceScope(cpu_dev): yield
Example #22
Source File: model_convert_utils.py From KL-Loss with Apache License 2.0 | 5 votes |
def get_device_option_cuda(gpu_id=0): device_option = caffe2_pb2.DeviceOption() device_option.device_type = caffe2_pb2.CUDA device_option.device_id = gpu_id return device_option
Example #23
Source File: c2.py From Detectron with Apache License 2.0 | 5 votes |
def CudaDevice(gpu_id): """Create a Cuda device.""" return core.DeviceOption(caffe2_pb2.CUDA, gpu_id)
Example #24
Source File: model_convert_utils.py From Detectron with Apache License 2.0 | 5 votes |
def get_device_option_cpu(): device_option = core.DeviceOption(caffe2_pb2.CPU) return device_option
Example #25
Source File: model_convert_utils.py From Detectron with Apache License 2.0 | 5 votes |
def get_device_option_cuda(gpu_id=0): device_option = caffe2_pb2.DeviceOption() device_option.device_type = caffe2_pb2.CUDA device_option.device_id = gpu_id return device_option
Example #26
Source File: model_convert_utils.py From KL-Loss with Apache License 2.0 | 5 votes |
def get_device_option_cpu(): device_option = core.DeviceOption(caffe2_pb2.CPU) return device_option
Example #27
Source File: test_batch_permutation_op.py From Detectron with Apache License 2.0 | 5 votes |
def test_size_exceptions(self): A = np.random.randn(2, 256, 42, 86).astype(np.float32) I = np.array(np.random.permutation(10), dtype=np.int32) with self.assertRaises(RuntimeError): self._run_op_test(A, I) # See doc string in _run_speed_test # def test_perf(self): # with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): # self._run_speed_test()
Example #28
Source File: test_loader.py From Detectron with Apache License 2.0 | 5 votes |
def run_net(net): workspace.RunNetOnce(net) gpu_dev = core.DeviceOption(caffe2_pb2.CUDA, 0) name_scope = 'gpu_{}'.format(0) with core.NameScope(name_scope): with core.DeviceScope(gpu_dev): data = workspace.FetchBlob(core.ScopedName('data')) return data
Example #29
Source File: c2.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def CudaDevice(gpu_id): """Create a Cuda device.""" return core.DeviceOption(caffe2_pb2.CUDA, gpu_id)
Example #30
Source File: test_smooth_l1_loss_op.py From Detectron with Apache License 2.0 | 5 votes |
def test_forward_and_gradient(self): Y = np.random.randn(128, 4 * 21).astype(np.float32) Y_hat = np.random.randn(128, 4 * 21).astype(np.float32) inside_weights = np.random.randn(128, 4 * 21).astype(np.float32) inside_weights[inside_weights < 0] = 0 outside_weights = np.random.randn(128, 4 * 21).astype(np.float32) outside_weights[outside_weights < 0] = 0 scale = np.random.random() beta = np.random.random() op = core.CreateOperator( 'SmoothL1Loss', ['Y_hat', 'Y', 'inside_weights', 'outside_weights'], ['loss'], scale=scale, beta=beta ) gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple( op, [Y_hat, Y, inside_weights, outside_weights], 0, [0] ) self.assertTrue( grad.shape == grad_estimated.shape, 'Fail check: grad.shape != grad_estimated.shape' ) # To inspect the gradient and estimated gradient: # np.set_printoptions(precision=3, suppress=True) # print('grad:') # print(grad) # print('grad_estimated:') # print(grad_estimated) self.assertTrue(res)