Python caffe2.python.core.ScopedName() Examples
The following are 30
code examples of caffe2.python.core.ScopedName().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
caffe2.python.core
, or try the search function
.
Example #1
Source File: test_loader.py From seg_every_thing with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #2
Source File: test_loader.py From Detectron with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #3
Source File: test_loader.py From KL-Loss with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #4
Source File: test_loader.py From Detectron-Cascade-RCNN with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #5
Source File: test_loader.py From CBNet with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #6
Source File: test_loader.py From masktextspotter.caffe2 with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #7
Source File: test_loader.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #8
Source File: test_loader.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 6 votes |
def get_net(data_loader, name): logger = logging.getLogger(__name__) blob_names = data_loader.get_output_names() net = core.Net(name) net.type = 'dag' for gpu_id in range(cfg.NUM_GPUS): with core.NameScope('gpu_{}'.format(gpu_id)): with core.DeviceScope(muji.OnGPU(gpu_id)): for blob_name in blob_names: blob = core.ScopedName(blob_name) workspace.CreateBlob(blob) net.DequeueBlobs( data_loader._blobs_queue_name, blob_names) logger.info("Protobuf:\n" + str(net.Proto())) return net
Example #9
Source File: test_loader.py From CBNet with Apache License 2.0 | 5 votes |
def run_net(net): workspace.RunNetOnce(net) gpu_dev = core.DeviceOption(caffe2_pb2.CUDA, 0) name_scope = 'gpu_{}'.format(0) with core.NameScope(name_scope): with core.DeviceScope(gpu_dev): data = workspace.FetchBlob(core.ScopedName('data')) return data
Example #10
Source File: test.py From Detectron with Apache License 2.0 | 5 votes |
def im_detect_mask(model, im_scale, boxes): """Infer instance segmentation masks. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scales (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_masks (ndarray): R x K x M x M array of class specific soft masks output by the network (must be processed by segm_results to convert into hard masks in the original image coordinate space) """ M = cfg.MRCNN.RESOLUTION if boxes.shape[0] == 0: pred_masks = np.zeros((0, M, M), np.float32) return pred_masks inputs = {'mask_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'mask_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.mask_net.Proto().name) # Fetch masks pred_masks = workspace.FetchBlob( core.ScopedName('mask_fcn_probs') ).squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_masks = pred_masks.reshape([-1, 1, M, M]) return pred_masks
Example #11
Source File: convert_pkl_to_pb.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def _get_result_blobs(check_blobs): ret = {} for x in check_blobs: sn = core.ScopedName(x) if workspace.HasBlob(sn): ret[x] = workspace.FetchBlob(sn) else: ret[x] = None return ret
Example #12
Source File: convert_pkl_to_pb.py From CBNet with Apache License 2.0 | 5 votes |
def _get_result_blobs(check_blobs): ret = {} for x in check_blobs: sn = core.ScopedName(x) if workspace.HasBlob(sn): ret[x] = workspace.FetchBlob(sn) else: ret[x] = None return ret
Example #13
Source File: test.py From CBNet with Apache License 2.0 | 5 votes |
def im_detect_keypoints(model, im_scale, boxes): """Infer instance keypoint poses. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scales (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_heatmaps (ndarray): R x J x M x M array of keypoint location logits (softmax inputs) for each of the J keypoint types output by the network (must be processed by keypoint_results to convert into point predictions in the original image coordinate space) """ M = cfg.KRCNN.HEATMAP_SIZE if boxes.shape[0] == 0: pred_heatmaps = np.zeros((0, cfg.KRCNN.NUM_KEYPOINTS, M, M), np.float32) return pred_heatmaps inputs = {'keypoint_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'keypoint_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.keypoint_net.Proto().name) pred_heatmaps = workspace.FetchBlob(core.ScopedName('kps_score')).squeeze() # In case of 1 if pred_heatmaps.ndim == 3: pred_heatmaps = np.expand_dims(pred_heatmaps, axis=0) return pred_heatmaps
Example #14
Source File: test.py From CBNet with Apache License 2.0 | 5 votes |
def im_detect_mask(model, im_scale, boxes): """Infer instance segmentation masks. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scales (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_masks (ndarray): R x K x M x M array of class specific soft masks output by the network (must be processed by segm_results to convert into hard masks in the original image coordinate space) """ M = cfg.MRCNN.RESOLUTION if boxes.shape[0] == 0: pred_masks = np.zeros((0, M, M), np.float32) return pred_masks inputs = {'mask_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'mask_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.mask_net.Proto().name) # Fetch masks pred_masks = workspace.FetchBlob( core.ScopedName('mask_fcn_probs') ).squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_masks = pred_masks.reshape([-1, 1, M, M]) return pred_masks
Example #15
Source File: loader.py From KL-Loss with Apache License 2.0 | 5 votes |
def create_enqueue_blobs(self): blob_names = self.get_output_names() enqueue_blob_names = [ '{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names ] for gpu_id in range(self._num_gpus): with c2_utils.NamedCudaScope(gpu_id): for blob in enqueue_blob_names: workspace.CreateBlob(core.ScopedName(blob)) return enqueue_blob_names
Example #16
Source File: model_builder.py From CBNet with Apache License 2.0 | 5 votes |
def add_training_inputs(model, roidb=None): """Create network input ops and blobs used for training. To be called *after* model_builder.create(). """ # Implementation notes: # Typically, one would create the input ops and then the rest of the net. # However, creating the input ops depends on loading the dataset, which # can take a few minutes for COCO. # We prefer to avoid waiting so debugging can fail fast. # Thus, we create the net *without input ops* prior to loading the # dataset, and then add the input ops after loading the dataset. # Since we defer input op creation, we need to do a little bit of surgery # to place the input ops at the start of the network op list. assert model.train, 'Training inputs can only be added to a trainable model' if roidb is not None: # To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1 model.roi_data_loader = RoIDataLoader( roidb, num_loaders=cfg.DATA_LOADER.NUM_THREADS, minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE, blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY ) orig_num_op = len(model.net._net.op) blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True) for gpu_id in range(cfg.NUM_GPUS): with c2_utils.NamedCudaScope(gpu_id): for blob_name in blob_names: workspace.CreateBlob(core.ScopedName(blob_name)) model.net.DequeueBlobs( model.roi_data_loader._blobs_queue_name, blob_names ) # A little op surgery to move input ops to the start of the net diff = len(model.net._net.op) - orig_num_op new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff] del model.net._net.op[:] model.net._net.op.extend(new_op)
Example #17
Source File: loader.py From CBNet with Apache License 2.0 | 5 votes |
def create_enqueue_blobs(self): blob_names = self.get_output_names() enqueue_blob_names = [ '{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names ] for gpu_id in range(self._num_gpus): with c2_utils.NamedCudaScope(gpu_id): for blob in enqueue_blob_names: workspace.CreateBlob(core.ScopedName(blob)) return enqueue_blob_names
Example #18
Source File: convert_pkl_to_pb.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model, _ = load_model(args) with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all( model, im, None, None, ) boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format( cls_boxes, cls_segms, cls_keyps) # sort the results based on score for comparision boxes, segms, keypoints, classes = _sort_results( boxes, segms, keypoints, classes) # write final results back to workspace def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes)) workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms)) workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes)) # get result blobs with c2_utils.NamedCudaScope(0): ret = _get_result_blobs(check_blobs) return ret
Example #19
Source File: convert_pkl_to_pb.py From Detectron with Apache License 2.0 | 5 votes |
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model, _ = load_model(args) with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all( model, im, None, None ) boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format( cls_boxes, cls_segms, cls_keyps ) # sort the results based on score for comparision boxes, segms, keypoints, classes = _sort_results(boxes, segms, keypoints, classes) # write final results back to workspace def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName("result_boxes"), _ornone(boxes)) workspace.FeedBlob(core.ScopedName("result_segms"), _ornone(segms)) workspace.FeedBlob(core.ScopedName("result_keypoints"), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName("result_classids"), _ornone(classes)) # get result blobs with c2_utils.NamedCudaScope(0): ret = _get_result_blobs(check_blobs) return ret
Example #20
Source File: test_loader.py From Detectron with Apache License 2.0 | 5 votes |
def run_net(net): workspace.RunNetOnce(net) gpu_dev = core.DeviceOption(caffe2_pb2.CUDA, 0) name_scope = 'gpu_{}'.format(0) with core.NameScope(name_scope): with core.DeviceScope(gpu_dev): data = workspace.FetchBlob(core.ScopedName('data')) return data
Example #21
Source File: model_builder.py From Detectron with Apache License 2.0 | 5 votes |
def add_training_inputs(model, roidb=None): """Create network input ops and blobs used for training. To be called *after* model_builder.create(). """ # Implementation notes: # Typically, one would create the input ops and then the rest of the net. # However, creating the input ops depends on loading the dataset, which # can take a few minutes for COCO. # We prefer to avoid waiting so debugging can fail fast. # Thus, we create the net *without input ops* prior to loading the # dataset, and then add the input ops after loading the dataset. # Since we defer input op creation, we need to do a little bit of surgery # to place the input ops at the start of the network op list. assert model.train, 'Training inputs can only be added to a trainable model' if roidb is not None: # To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1 model.roi_data_loader = RoIDataLoader( roidb, num_loaders=cfg.DATA_LOADER.NUM_THREADS, minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE, blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY ) orig_num_op = len(model.net._net.op) blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True) for gpu_id in range(cfg.NUM_GPUS): with c2_utils.NamedCudaScope(gpu_id): for blob_name in blob_names: workspace.CreateBlob(core.ScopedName(blob_name)) model.net.DequeueBlobs( model.roi_data_loader._blobs_queue_name, blob_names ) # A little op surgery to move input ops to the start of the net diff = len(model.net._net.op) - orig_num_op new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff] del model.net._net.op[:] model.net._net.op.extend(new_op)
Example #22
Source File: loader.py From Detectron with Apache License 2.0 | 5 votes |
def create_enqueue_blobs(self): blob_names = self.get_output_names() enqueue_blob_names = [ '{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names ] for gpu_id in range(self._num_gpus): with c2_utils.NamedCudaScope(gpu_id): for blob in enqueue_blob_names: workspace.CreateBlob(core.ScopedName(blob)) return enqueue_blob_names
Example #23
Source File: convert_pkl_to_pb.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def run_model_cfg(args, im, check_blobs): workspace.ResetWorkspace() model, _ = load_model(args) with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = test_engine.im_detect_all( model, im, None, None, ) boxes, segms, keypoints, classes = vis_utils.convert_from_cls_format( cls_boxes, cls_segms, cls_keyps) # sort the results based on score for comparision boxes, segms, keypoints, classes = _sort_results( boxes, segms, keypoints, classes) # write final results back to workspace def _ornone(res): return np.array(res) if res is not None else np.array([], dtype=np.float32) with c2_utils.NamedCudaScope(0): workspace.FeedBlob(core.ScopedName('result_boxes'), _ornone(boxes)) workspace.FeedBlob(core.ScopedName('result_segms'), _ornone(segms)) workspace.FeedBlob(core.ScopedName('result_keypoints'), _ornone(keypoints)) workspace.FeedBlob(core.ScopedName('result_classids'), _ornone(classes)) # get result blobs with c2_utils.NamedCudaScope(0): ret = _get_result_blobs(check_blobs) return ret
Example #24
Source File: convert_pkl_to_pb.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def _get_result_blobs(check_blobs): ret = {} for x in check_blobs: sn = core.ScopedName(x) if workspace.HasBlob(sn): ret[x] = workspace.FetchBlob(sn) else: ret[x] = None return ret
Example #25
Source File: test.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def im_detect_keypoints(model, im_scale, boxes): """Infer instance keypoint poses. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scales (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_heatmaps (ndarray): R x J x M x M array of keypoint location logits (softmax inputs) for each of the J keypoint types output by the network (must be processed by keypoint_results to convert into point predictions in the original image coordinate space) """ M = cfg.KRCNN.HEATMAP_SIZE if boxes.shape[0] == 0: pred_heatmaps = np.zeros((0, cfg.KRCNN.NUM_KEYPOINTS, M, M), np.float32) return pred_heatmaps inputs = {'keypoint_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'keypoint_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.keypoint_net.Proto().name) pred_heatmaps = workspace.FetchBlob(core.ScopedName('kps_score')).squeeze() # In case of 1 if pred_heatmaps.ndim == 3: pred_heatmaps = np.expand_dims(pred_heatmaps, axis=0) return pred_heatmaps
Example #26
Source File: test.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def im_detect_mask(model, im_scale, boxes): """Infer instance segmentation masks. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scales (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_masks (ndarray): R x K x M x M array of class specific soft masks output by the network (must be processed by segm_results to convert into hard masks in the original image coordinate space) """ M = cfg.MRCNN.RESOLUTION if boxes.shape[0] == 0: pred_masks = np.zeros((0, M, M), np.float32) return pred_masks inputs = {'mask_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'mask_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.mask_net.Proto().name) # Fetch masks pred_masks = workspace.FetchBlob( core.ScopedName('mask_fcn_probs') ).squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_masks = pred_masks.reshape([-1, 1, M, M]) return pred_masks
Example #27
Source File: test_loader.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def run_net(net): workspace.RunNetOnce(net) gpu_dev = core.DeviceOption(caffe2_pb2.CUDA, 0) name_scope = 'gpu_{}'.format(0) with core.NameScope(name_scope): with core.DeviceScope(gpu_dev): data = workspace.FetchBlob(core.ScopedName('data')) return data
Example #28
Source File: model_builder.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def add_training_inputs(model, roidb=None): """Create network input ops and blobs used for training. To be called *after* model_builder.create(). """ # Implementation notes: # Typically, one would create the input ops and then the rest of the net. # However, creating the input ops depends on loading the dataset, which # can take a few minutes for COCO. # We prefer to avoid waiting so debugging can fail fast. # Thus, we create the net *without input ops* prior to loading the # dataset, and then add the input ops after loading the dataset. # Since we defer input op creation, we need to do a little bit of surgery # to place the input ops at the start of the network op list. assert model.train, 'Training inputs can only be added to a trainable model' if roidb is not None: # To make debugging easier you can set cfg.DATA_LOADER.NUM_THREADS = 1 model.roi_data_loader = RoIDataLoader( roidb, num_loaders=cfg.DATA_LOADER.NUM_THREADS, minibatch_queue_size=cfg.DATA_LOADER.MINIBATCH_QUEUE_SIZE, blobs_queue_capacity=cfg.DATA_LOADER.BLOBS_QUEUE_CAPACITY ) orig_num_op = len(model.net._net.op) blob_names = roi_data_minibatch.get_minibatch_blob_names(is_training=True) for gpu_id in range(cfg.NUM_GPUS): with c2_utils.NamedCudaScope(gpu_id): for blob_name in blob_names: workspace.CreateBlob(core.ScopedName(blob_name)) model.net.DequeueBlobs( model.roi_data_loader._blobs_queue_name, blob_names ) # A little op surgery to move input ops to the start of the net diff = len(model.net._net.op) - orig_num_op new_op = model.net._net.op[-diff:] + model.net._net.op[:-diff] del model.net._net.op[:] model.net._net.op.extend(new_op)
Example #29
Source File: loader.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def create_enqueue_blobs(self): blob_names = self.get_output_names() enqueue_blob_names = [ '{}_enqueue_{}'.format(b, self._loader_id) for b in blob_names ] for gpu_id in range(self._num_gpus): with c2_utils.NamedCudaScope(gpu_id): for blob in enqueue_blob_names: workspace.CreateBlob(core.ScopedName(blob)) return enqueue_blob_names
Example #30
Source File: test.py From masktextspotter.caffe2 with Apache License 2.0 | 5 votes |
def im_conv_body_only(model, im): """Runs `model.conv_body_net` on the given image `im`.""" im_blob, im_scale_factors = _get_image_blob(im) workspace.FeedBlob(core.ScopedName('data'), im_blob) workspace.RunNet(model.conv_body_net.Proto().name) return im_scale_factors