Python caffe2.python.core.CreateOperator() Examples
The following are 30
code examples of caffe2.python.core.CreateOperator().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
caffe2.python.core
, or try the search function
.
Example #1
Source File: test_batch_permutation_op.py From masktextspotter.caffe2 with Apache License 2.0 | 6 votes |
def _run_op_test(self, X, I, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', X) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = X[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08)
Example #2
Source File: test_batch_permutation_op.py From Detectron with Apache License 2.0 | 6 votes |
def _run_op_test(self, X, I, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', X) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = X[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08)
Example #3
Source File: detector.py From Detectron with Apache License 2.0 | 6 votes |
def _CorrectMomentum(self, correction): """The MomentumSGDUpdate op implements the update V as V := mu * V + lr * grad, where mu is the momentum factor, lr is the learning rate, and grad is the stochastic gradient. Since V is not defined independently of the learning rate (as it should ideally be), when the learning rate is changed we should scale the update history V in order to make it compatible in scale with lr * grad. """ logger.info( 'Scaling update history by {:.6f} (new lr / old lr)'. format(correction)) for i in range(cfg.NUM_GPUS): with c2_utils.CudaScope(i): for param in self.TrainableParams(gpu_id=i): op = core.CreateOperator( 'Scale', [param + '_momentum'], [param + '_momentum'], scale=correction) workspace.RunOperatorOnce(op)
Example #4
Source File: detector.py From KL-Loss with Apache License 2.0 | 6 votes |
def _CorrectMomentum(self, correction): """The MomentumSGDUpdate op implements the update V as V := mu * V + lr * grad, where mu is the momentum factor, lr is the learning rate, and grad is the stochastic gradient. Since V is not defined independently of the learning rate (as it should ideally be), when the learning rate is changed we should scale the update history V in order to make it compatible in scale with lr * grad. """ logger.info( 'Scaling update history by {:.6f} (new lr / old lr)'. format(correction)) for i in range(cfg.NUM_GPUS): with c2_utils.CudaScope(i): for param in self.TrainableParams(gpu_id=i): op = core.CreateOperator( 'Scale', [param + '_momentum'], [param + '_momentum'], scale=correction) workspace.RunOperatorOnce(op)
Example #5
Source File: caffe_translator.py From optimized-models with Apache License 2.0 | 6 votes |
def ConvertTensorProtosToInitNet(net_params, input_name): """Takes the net_params returned from TranslateModel, and wrap it as an init net that contain GivenTensorFill. This is a very simple feature that only works with float tensors, and is only intended to be used in an environment where you want a single initialization file - for more complex cases, use a db to store the parameters. """ init_net = caffe2_pb2.NetDef() for tensor in net_params.protos: if len(tensor.float_data) == 0: raise RuntimeError( "Only float tensors are supported in this util.") op = core.CreateOperator( "GivenTensorFill", [], [tensor.name], arg=[ utils.MakeArgument("shape", list(tensor.dims)), utils.MakeArgument("values", tensor.float_data)]) init_net.op.extend([op]) init_net.op.extend([core.CreateOperator("ConstantFill", [], [input_name], shape=[1])]) return init_net
Example #6
Source File: loader.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #7
Source File: run_add5_op.py From tutorials with Apache License 2.0 | 6 votes |
def run_add5_and_add5gradient_op(device): # clear the workspace before running the operator workspace.ResetWorkspace() add5 = core.CreateOperator("Add5", ["X"], ["Y"], device_option=device) print("==> Running Add5 op:") workspace.FeedBlob("X", (np.random.rand(5, 5)), device_option=device) print("Input of Add5: ", workspace.FetchBlob("X")) workspace.RunOperatorOnce(add5) print("Output of Add5: ", workspace.FetchBlob("Y")) print("\n\n==> Running Add5Gradient op:") print("Input of Add5Gradient: ", workspace.FetchBlob("Y")) add5gradient = core.CreateOperator("Add5Gradient", ["Y"], ["Z"], device_option=device) workspace.RunOperatorOnce(add5gradient) print("Output of Add5Gradient: ", workspace.FetchBlob("Z"))
Example #8
Source File: loader.py From KL-Loss with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #9
Source File: test_batch_permutation_op.py From KL-Loss with Apache License 2.0 | 6 votes |
def _run_op_test(self, X, I, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', X) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = X[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08)
Example #10
Source File: loader.py From Detectron with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #11
Source File: dataloader.py From video-long-term-feature-banks with Apache License 2.0 | 6 votes |
def enqueue_blobs( self, gpu_id, enqueue_blobs_names, blob_values, ): enqueue_blobs_names = [ 'gpu_{}/{}'.format( gpu_id, enqueue_blob_name ) for enqueue_blob_name in enqueue_blobs_names ] deviceOption = core.DeviceOption(caffe2_pb2.CUDA, gpu_id) for (blob_name, blob) in zip(enqueue_blobs_names, blob_values): workspace.FeedBlob(blob_name, blob, device_option=deviceOption) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) workspace.RunOperatorOnce( core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + enqueue_blobs_names, enqueue_blobs_names + [queue_name + '_enqueue_status'], device_option=deviceOption, ) )
Example #12
Source File: loader.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #13
Source File: test_batch_permutation_op.py From Detectron-Cascade-RCNN with Apache License 2.0 | 6 votes |
def _run_op_test(self, X, I, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', X) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = X[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08)
Example #14
Source File: test_batch_permutation_op.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 6 votes |
def _run_op_test(self, X, I, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', X) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = X[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08)
Example #15
Source File: add5_op_test.py From tutorials with Apache License 2.0 | 6 votes |
def test_add5(self, N, C, gc, dc): # set th seed np.random.seed(101) # TODO: test double, int and int64 data = np.random.rand(N, C).astype(np.float32) op = core.CreateOperator("Add5", ["data"], ["output"]) # device check self.assertDeviceChecks(dc, op, [data], [0]) # gradient check self.assertGradientChecks(gc, op, [data], 0, [0]) # reference check def ref_add5(input): return [input + 5] self.assertReferenceChecks(gc, op, [data], ref_add5)
Example #16
Source File: test_spatial_narrow_as_op.py From masktextspotter.caffe2 with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #17
Source File: shared.py From detectron2 with Apache License 2.0 | 6 votes |
def _create_const_fill_op_from_c2_int8_tensor(name, int8_tensor): assert type(int8_tensor) == workspace.Int8Tensor kTypeNameMapper = { np.dtype("int32"): "Int8GivenIntTensorFill", np.dtype("uint8"): "Int8GivenTensorFill", } tensor = int8_tensor.data assert tensor.dtype in [np.dtype("uint8"), np.dtype("int32")] values = tensor.tobytes() if tensor.dtype == np.dtype("uint8") else tensor return core.CreateOperator( kTypeNameMapper[tensor.dtype], [], [name], values=values, shape=tensor.shape, Y_scale=int8_tensor.scale, Y_zero_point=int8_tensor.zero_point, )
Example #18
Source File: shared.py From detectron2 with Apache License 2.0 | 6 votes |
def _create_const_fill_op_from_numpy(name, tensor, device_option=None): assert type(tensor) == np.ndarray kTypeNameMapper = { np.dtype("float32"): "GivenTensorFill", np.dtype("int32"): "GivenTensorIntFill", np.dtype("int64"): "GivenTensorInt64Fill", np.dtype("uint8"): "GivenTensorStringFill", } args_dict = {} if tensor.dtype == np.dtype("uint8"): args_dict.update({"values": [str(tensor.data)], "shape": [1]}) else: args_dict.update({"values": tensor, "shape": tensor.shape}) if device_option is not None: args_dict["device_option"] = device_option return core.CreateOperator(kTypeNameMapper[tensor.dtype], [], [name], **args_dict)
Example #19
Source File: detector.py From seg_every_thing with Apache License 2.0 | 6 votes |
def _CorrectMomentum(self, correction): """The MomentumSGDUpdate op implements the update V as V := mu * V + lr * grad, where mu is the momentum factor, lr is the learning rate, and grad is the stochastic gradient. Since V is not defined independently of the learning rate (as it should ideally be), when the learning rate is changed we should scale the update history V in order to make it compatible in scale with lr * grad. """ logger.info( 'Scaling update history by {:.6f} (new lr / old lr)'. format(correction)) for i in range(cfg.NUM_GPUS): with c2_utils.CudaScope(i): for param in self.TrainableParams(gpu_id=i): op = core.CreateOperator( 'Scale', [param + '_momentum'], [param + '_momentum'], scale=correction) workspace.RunOperatorOnce(op)
Example #20
Source File: mix_loader.py From masktextspotter.caffe2 with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #21
Source File: test_batch_permutation_op.py From seg_every_thing with Apache License 2.0 | 6 votes |
def _run_op_test(self, X, I, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('BatchPermutation', ['X', 'I'], ['Y']) workspace.FeedBlob('X', X) workspace.FeedBlob('I', I) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob('Y') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.1, threshold=0.001, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [X, I], 0, [0]) self.assertTrue(res, 'Grad check failed') Y_ref = X[I] np.testing.assert_allclose(Y, Y_ref, rtol=1e-5, atol=1e-08)
Example #22
Source File: test_spatial_narrow_as_op.py From seg_every_thing with Apache License 2.0 | 6 votes |
def _run_test(self, A, B, check_grad=False): with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)): op = core.CreateOperator('SpatialNarrowAs', ['A', 'B'], ['C']) workspace.FeedBlob('A', A) workspace.FeedBlob('B', B) workspace.RunOperatorOnce(op) C = workspace.FetchBlob('C') if check_grad: gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple(op, [A, B], 0, [0]) self.assertTrue(res, 'Grad check failed') dims = C.shape C_ref = A[:dims[0], :dims[1], :dims[2], :dims[3]] np.testing.assert_allclose(C, C_ref, rtol=1e-5, atol=1e-08)
Example #23
Source File: loader.py From Detectron-Cascade-RCNN with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #24
Source File: detector.py From Detectron-Cascade-RCNN with Apache License 2.0 | 6 votes |
def _CorrectMomentum(self, correction): """The MomentumSGDUpdate op implements the update V as V := mu * V + lr * grad, where mu is the momentum factor, lr is the learning rate, and grad is the stochastic gradient. Since V is not defined independently of the learning rate (as it should ideally be), when the learning rate is changed we should scale the update history V in order to make it compatible in scale with lr * grad. """ logger.info( 'Scaling update history by {:.6f} (new lr / old lr)'. format(correction)) for i in range(cfg.NUM_GPUS): with c2_utils.CudaScope(i): for param in self.TrainableParams(gpu_id=i): op = core.CreateOperator( 'Scale', [param + '_momentum'], [param + '_momentum'], scale=correction) workspace.RunOperatorOnce(op)
Example #25
Source File: detector.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 6 votes |
def _CorrectMomentum(self, correction): """The MomentumSGDUpdate op implements the update V as V := mu * V + lr * grad, where mu is the momentum factor, lr is the learning rate, and grad is the stochastic gradient. Since V is not defined independently of the learning rate (as it should ideally be), when the learning rate is changed we should scale the update history V in order to make it compatible in scale with lr * grad. """ logger.info( 'Scaling update history by {:.6f} (new lr / old lr)'. format(correction)) for i in range(cfg.NUM_GPUS): with c2_utils.CudaScope(i): for param in self.TrainableParams(gpu_id=i): op = core.CreateOperator( 'Scale', [param + '_momentum'], [param + '_momentum'], scale=correction) workspace.RunOperatorOnce(op)
Example #26
Source File: test_smooth_l1_loss_op.py From masktextspotter.caffe2 with Apache License 2.0 | 5 votes |
def test_forward_and_gradient(self): Y = np.random.randn(128, 4 * 21).astype(np.float32) Y_hat = np.random.randn(128, 4 * 21).astype(np.float32) inside_weights = np.random.randn(128, 4 * 21).astype(np.float32) inside_weights[inside_weights < 0] = 0 outside_weights = np.random.randn(128, 4 * 21).astype(np.float32) outside_weights[outside_weights < 0] = 0 scale = np.random.random() beta = np.random.random() op = core.CreateOperator( 'SmoothL1Loss', ['Y_hat', 'Y', 'inside_weights', 'outside_weights'], ['loss'], scale=scale, beta=beta ) gc = gradient_checker.GradientChecker( stepsize=0.005, threshold=0.005, device_option=core.DeviceOption(caffe2_pb2.CUDA, 0) ) res, grad, grad_estimated = gc.CheckSimple( op, [Y_hat, Y, inside_weights, outside_weights], 0, [0] ) self.assertTrue( grad.shape == grad_estimated.shape, 'Fail check: grad.shape != grad_estimated.shape' ) # To inspect the gradient and estimated gradient: # np.set_printoptions(precision=3, suppress=True) # print('grad:') # print(grad) # print('grad_estimated:') # print(grad_estimated) self.assertTrue(res)
Example #27
Source File: mix_loader.py From masktextspotter.caffe2 with Apache License 2.0 | 5 votes |
def close_blobs_queues(self): """Close a BlobsQueue.""" for gpu_id in range(self._num_gpus): with core.NameScope('gpu_{}'.format(gpu_id)): workspace.RunOperatorOnce( core.CreateOperator( 'CloseBlobsQueue', [self._blobs_queue_name], [] ) )
Example #28
Source File: mix_loader.py From masktextspotter.caffe2 with Apache License 2.0 | 5 votes |
def create_blobs_queues(self): """Create one BlobsQueue for each GPU to hold mini-batches.""" for gpu_id in range(self._num_gpus): with c2_utils.GpuNameScope(gpu_id): workspace.RunOperatorOnce( core.CreateOperator( 'CreateBlobsQueue', [], [self._blobs_queue_name], num_blobs=len(self.get_output_names()), capacity=self._blobs_queue_capacity ) ) return self.create_enqueue_blobs()
Example #29
Source File: loader.py From masktextspotter.caffe2 with Apache License 2.0 | 5 votes |
def close_blobs_queues(self): """Close a BlobsQueue.""" for gpu_id in range(self._num_gpus): with core.NameScope('gpu_{}'.format(gpu_id)): workspace.RunOperatorOnce( core.CreateOperator( 'CloseBlobsQueue', [self._blobs_queue_name], [] ) )
Example #30
Source File: convert_pkl_to_pb.py From Detectron with Apache License 2.0 | 5 votes |
def add_bbox_ops(args, net, blobs): new_ops = [] new_external_outputs = [] # Operators for bboxes op_box = core.CreateOperator( "BBoxTransform", ["rpn_rois", "bbox_pred", "im_info"], ["pred_bbox"], weights=cfg.MODEL.BBOX_REG_WEIGHTS, apply_scale=False, correct_transform_coords=True, ) new_ops.extend([op_box]) blob_prob = "cls_prob" blob_box = "pred_bbox" op_nms = core.CreateOperator( "BoxWithNMSLimit", [blob_prob, blob_box], ["score_nms", "bbox_nms", "class_nms"], arg=[ putils.MakeArgument("score_thresh", cfg.TEST.SCORE_THRESH), putils.MakeArgument("nms", cfg.TEST.NMS), putils.MakeArgument("detections_per_im", cfg.TEST.DETECTIONS_PER_IM), putils.MakeArgument("soft_nms_enabled", cfg.TEST.SOFT_NMS.ENABLED), putils.MakeArgument("soft_nms_method", cfg.TEST.SOFT_NMS.METHOD), putils.MakeArgument("soft_nms_sigma", cfg.TEST.SOFT_NMS.SIGMA), ], ) new_ops.extend([op_nms]) new_external_outputs.extend(["score_nms", "bbox_nms", "class_nms"]) net.Proto().op.extend(new_ops) net.Proto().external_output.extend(new_external_outputs)