Python spacy.__version__() Examples

The following are 8 code examples of spacy.__version__(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module spacy , or try the search function .
Example #1
Source File: test_spacy_udpipe.py    From spacy-udpipe with MIT License 6 votes vote down vote up
def test_morph_exception() -> None:
    assert spacy.__version__ <= SPACY_VERSION

    lang = RO
    text = "Ce mai faci?"

    download(lang=lang)

    try:
        nlp = load(lang=lang)
        assert nlp._meta["lang"] == f"udpipe_{lang}"
        doc = nlp(text)
    except ValueError:
        nlp = load(lang=lang, ignore_tag_map=True)
        assert nlp._meta["lang"] == f"udpipe_{lang}"
        doc = nlp(text)

    assert doc 
Example #2
Source File: sentence_splitter.py    From allennlp with Apache License 2.0 5 votes vote down vote up
def __init__(self, language: str = "en_core_web_sm", rule_based: bool = False) -> None:
        # we need spacy's dependency parser if we're not using rule-based sentence boundary detection.
        self.spacy = get_spacy_model(language, parse=not rule_based, ner=False, pos_tags=False)
        if rule_based:
            # we use `sentencizer`, a built-in spacy module for rule-based sentence boundary detection.
            # depending on the spacy version, it could be called 'sentencizer' or 'sbd'
            sbd_name = "sbd" if spacy.__version__ < "2.1" else "sentencizer"
            if not self.spacy.has_pipe(sbd_name):
                sbd = self.spacy.create_pipe(sbd_name)
                self.spacy.add_pipe(sbd) 
Example #3
Source File: base_pipeline.py    From medaCy with GNU General Public License v3.0 5 votes vote down vote up
def get_report(self):
        """
        Generates a report about the pipeline class's configuration
        :return: str
        """

        # Get data about these components
        learner_name, learner = self.get_learner()
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()
        spacy_metadata = self.spacy_pipeline.meta

        # Start the report with the name of the class and the docstring
        report = f"{type(self).__name__}\n{self.__doc__}\n\n"

        report += f"Report created at {time.asctime()}\n\n"
        report += f"MedaCy Version: {medacy.__version__}\nSpaCy Version: {spacy.__version__}\n"
        report += f"SpaCy Model: {spacy_metadata['name']}, version {spacy_metadata['version']}\n"
        report += f"Entities: {self.entities}\n"
        report += f"Constructor arguments: {self._kwargs}\n\n"

        # Print data about the feature overlayers
        if self.overlayers:
            report += "Feature Overlayers:\n\n"
            report += "\n\n".join(o.get_report() for o in self.overlayers) + '\n\n'

        # Print data about the feature extractor
        report += f"Feature Extractor: {type(feature_extractor).__name__} at {inspect.getfile(type(feature_extractor))}\n"
        report += f"\tWindow Size: {feature_extractor.window_size}\n"
        report += f"\tSpaCy Features: {feature_extractor.spacy_features}\n"

        # Print the name and location of the remaining components
        report += f"Learner: {learner_name} at {inspect.getfile(type(learner))}\n"

        if self.get_tokenizer():
            report += f"Tokenizer: {type(tokenizer).__name__} at {inspect.getfile(type(tokenizer))}\n"
        else:
            report += f"Tokenizer: spaCy pipeline default\n"

        return report 
Example #4
Source File: 20_TestLemmatizer.py    From LemmInflect with MIT License 5 votes vote down vote up
def __init__(self):
        global lemminflect
        import lemminflect
        self.name = 'LemmInflect'
        self.version_string = 'LemmInflect version: %s' % lemminflect.__version__
        # Force loading dictionary and model so lazy loading doesn't show up in run times
        lemmas = lemminflect.getAllLemmas('testing', 'VERB')
        lemmas = lemminflect.getAllLemmasOOV('xxtesting', 'VERB')

    # Use only the dictionary methods 
Example #5
Source File: 20_TestLemmatizer.py    From LemmInflect with MIT License 5 votes vote down vote up
def __init__(self, smodel):
        import spacy
        self.lemmatizer = spacy.load(smodel).vocab.morphology.lemmatizer
        self.name = 'Spacy'
        self.version_string = 'Spacy version: %s' % spacy.__version__

    # get the lemmas for every upos (pos_type='a' will have adv and adj) 
Example #6
Source File: 20_TestLemmatizer.py    From LemmInflect with MIT License 5 votes vote down vote up
def __init__(self):
        global pattern_lemmatize
        from pattern.en import lemma as pattern_lemmatize
        self.name = 'PatternEN'
        import pattern
        self.version_string = 'Pattern.en version: %s' % pattern.__version__

    # get the lemmas for every upos (pos_type='a' will have adv and adj) 
Example #7
Source File: 20_TestLemmatizer.py    From LemmInflect with MIT License 5 votes vote down vote up
def __init__(self):
        import nltk
        self.lemmatizer = nltk.stem.WordNetLemmatizer()
        self.name = 'NLTK'
        self.version_string = 'NLTK version: %s' % nltk.__version__

    # get the lemmas for every upos (pos_type='a' will have adv and adj) 
Example #8
Source File: spacy.py    From mlflow with Apache License 2.0 5 votes vote down vote up
def get_default_conda_env():
    """
    :return: The default Conda environment for MLflow Models produced by calls to
             :func:`save_model()` and :func:`log_model()`.
    """
    import spacy

    return _mlflow_conda_env(
        additional_conda_deps=None,
        additional_pip_deps=[
            "spacy=={}".format(spacy.__version__),
        ],
        additional_conda_channels=None)