Python object_detection.utils.label_map_util.convert_label_map_to_categories() Examples
The following are 30
code examples of object_detection.utils.label_map_util.convert_label_map_to_categories().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.utils.label_map_util
, or try the search function
.
Example #1
Source File: eval.py From DOTA_models with Apache License 2.0 | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #2
Source File: eval.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #3
Source File: eval.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #4
Source File: detector.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 6 votes |
def load_model(self): """ Loads the detection model Args: Returns: """ with self._detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self._path_to_ckpt, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(self._path_to_labels) categories = label_map_util.convert_label_map_to_categories(\ label_map, max_num_classes=self._num_classes, use_display_name=True) self.category_index = label_map_util.create_category_index(categories)
Example #5
Source File: eval.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #6
Source File: object_detection_trainer.py From CVTron with Apache License 2.0 | 6 votes |
def evaluate(self, eval_pipeline_file, model_dir, eval_dir): configs = self._get_configs_from_pipeline_file(eval_pipeline_file) model_config = configs['model'] eval_config = configs['eval_config'] input_config = configs['eval_input_config'] model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=True) create_input_dict_fn = functools.partial(self.get_next, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, model_dir, eval_dir)
Example #7
Source File: eval.py From HereIsWally with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #8
Source File: eval.py From moveo_ros with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #9
Source File: eval.py From hands-detection with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #10
Source File: eval.py From object_detector_app with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #11
Source File: label_map_util_test.py From moveo_ros with MIT License | 5 votes |
def test_keep_categories_with_unique_id(self): label_map_proto = string_int_label_map_pb2.StringIntLabelMap() label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'child' } item { id:1 name:'person' } item { id:1 name:'n00007846' } """ text_format.Merge(label_map_string, label_map_proto) categories = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=3) self.assertListEqual([{ 'id': 2, 'name': u'cat' }, { 'id': 1, 'name': u'child' }], categories)
Example #12
Source File: label_map_util_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def test_convert_label_map_to_coco_categories_with_few_classes(self): label_map_proto = self._generate_label_map(num_classes=4) cat_no_offset = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=2) expected_categories_list = [{ 'name': u'1', 'id': 1 }, { 'name': u'2', 'id': 2 }] self.assertListEqual(expected_categories_list, cat_no_offset)
Example #13
Source File: label_map_util_test.py From moveo_ros with MIT License | 5 votes |
def test_convert_label_map_to_coco_categories_with_few_classes(self): label_map_proto = self._generate_label_map(num_classes=4) cat_no_offset = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=2) expected_categories_list = [{ 'name': u'1', 'id': 1 }, { 'name': u'2', 'id': 2 }] self.assertListEqual(expected_categories_list, cat_no_offset)
Example #14
Source File: label_map_util_test.py From moveo_ros with MIT License | 5 votes |
def test_convert_label_map_to_categories_no_label_map(self): categories = label_map_util.convert_label_map_to_categories( None, max_num_classes=3) expected_categories_list = [{ 'name': u'category_1', 'id': 1 }, { 'name': u'category_2', 'id': 2 }, { 'name': u'category_3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #15
Source File: label_map_util_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_convert_label_map_to_categories_no_label_map(self): categories = label_map_util.convert_label_map_to_categories( None, max_num_classes=3) expected_categories_list = [{ 'name': u'category_1', 'id': 1 }, { 'name': u'category_2', 'id': 2 }, { 'name': u'category_3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #16
Source File: label_map_util_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_keep_categories_with_unique_id(self): label_map_proto = string_int_label_map_pb2.StringIntLabelMap() label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'child' } item { id:1 name:'person' } item { id:1 name:'n00007846' } """ text_format.Merge(label_map_string, label_map_proto) categories = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=3) self.assertListEqual([{ 'id': 2, 'name': u'cat' }, { 'id': 1, 'name': u'child' }], categories)
Example #17
Source File: label_map_util_test.py From moveo_ros with MIT License | 5 votes |
def test_convert_label_map_to_coco_categories(self): label_map_proto = self._generate_label_map(num_classes=4) categories = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=3) expected_categories_list = [{ 'name': u'1', 'id': 1 }, { 'name': u'2', 'id': 2 }, { 'name': u'3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #18
Source File: label_map_util_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def test_convert_label_map_to_categories_no_label_map(self): categories = label_map_util.convert_label_map_to_categories( None, max_num_classes=3) expected_categories_list = [{ 'name': u'category_1', 'id': 1 }, { 'name': u'category_2', 'id': 2 }, { 'name': u'category_3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #19
Source File: label_map_util_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_convert_label_map_to_categories_no_label_map(self): categories = label_map_util.convert_label_map_to_categories( None, max_num_classes=3) expected_categories_list = [{ 'name': u'category_1', 'id': 1 }, { 'name': u'category_2', 'id': 2 }, { 'name': u'category_3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #20
Source File: label_map_util_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_convert_label_map_to_coco_categories_with_few_classes(self): label_map_proto = self._generate_label_map(num_classes=4) cat_no_offset = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=2) expected_categories_list = [{ 'name': u'1', 'id': 1 }, { 'name': u'2', 'id': 2 }] self.assertListEqual(expected_categories_list, cat_no_offset)
Example #21
Source File: label_map_util_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_convert_label_map_to_coco_categories(self): label_map_proto = self._generate_label_map(num_classes=4) categories = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=3) expected_categories_list = [{ 'name': u'1', 'id': 1 }, { 'name': u'2', 'id': 2 }, { 'name': u'3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #22
Source File: label_map_util_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_convert_label_map_to_categories_no_label_map(self): categories = label_map_util.convert_label_map_to_categories( None, max_num_classes=3) expected_categories_list = [{ 'name': u'category_1', 'id': 1 }, { 'name': u'category_2', 'id': 2 }, { 'name': u'category_3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #23
Source File: label_map_util_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_keep_categories_with_unique_id(self): label_map_proto = string_int_label_map_pb2.StringIntLabelMap() label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'child' } item { id:1 name:'person' } item { id:1 name:'n00007846' } """ text_format.Merge(label_map_string, label_map_proto) categories = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=3) self.assertListEqual([{ 'id': 2, 'name': u'cat' }, { 'id': 1, 'name': u'child' }], categories)
Example #24
Source File: label_map_util_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_convert_label_map_to_coco_categories_with_few_classes(self): label_map_proto = self._generate_label_map(num_classes=4) cat_no_offset = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=2) expected_categories_list = [{ 'name': u'1', 'id': 1 }, { 'name': u'2', 'id': 2 }] self.assertListEqual(expected_categories_list, cat_no_offset)
Example #25
Source File: label_map_util_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_convert_label_map_to_coco_categories(self): label_map_proto = self._generate_label_map(num_classes=4) categories = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=3) expected_categories_list = [{ 'name': u'1', 'id': 1 }, { 'name': u'2', 'id': 2 }, { 'name': u'3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #26
Source File: label_map_util_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_convert_label_map_to_categories_no_label_map(self): categories = label_map_util.convert_label_map_to_categories( None, max_num_classes=3) expected_categories_list = [{ 'name': u'category_1', 'id': 1 }, { 'name': u'category_2', 'id': 2 }, { 'name': u'category_3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #27
Source File: label_map_util_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_keep_categories_with_unique_id(self): label_map_proto = string_int_label_map_pb2.StringIntLabelMap() label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'child' } item { id:1 name:'person' } item { id:1 name:'n00007846' } """ text_format.Merge(label_map_string, label_map_proto) categories = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=3) self.assertListEqual([{ 'id': 2, 'name': u'cat' }, { 'id': 1, 'name': u'child' }], categories)
Example #28
Source File: label_map_util_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def test_convert_label_map_to_coco_categories_with_few_classes(self): label_map_proto = self._generate_label_map(num_classes=4) cat_no_offset = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=2) expected_categories_list = [{ 'name': u'1', 'id': 1 }, { 'name': u'2', 'id': 2 }] self.assertListEqual(expected_categories_list, cat_no_offset)
Example #29
Source File: label_map_util_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def test_convert_label_map_to_coco_categories(self): label_map_proto = self._generate_label_map(num_classes=4) categories = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=3) expected_categories_list = [{ 'name': u'1', 'id': 1 }, { 'name': u'2', 'id': 2 }, { 'name': u'3', 'id': 3 }] self.assertListEqual(expected_categories_list, categories)
Example #30
Source File: label_map_util_test.py From object_detector_app with MIT License | 5 votes |
def test_keep_categories_with_unique_id(self): label_map_proto = string_int_label_map_pb2.StringIntLabelMap() label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'child' } item { id:1 name:'person' } item { id:1 name:'n00007846' } """ text_format.Merge(label_map_string, label_map_proto) categories = label_map_util.convert_label_map_to_categories( label_map_proto, max_num_classes=3) self.assertListEqual([{ 'id': 2, 'name': u'cat' }, { 'id': 1, 'name': u'child' }], categories)