Python object_detection.utils.label_map_util.create_category_index_from_labelmap() Examples
The following are 29
code examples of object_detection.utils.label_map_util.create_category_index_from_labelmap().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.utils.label_map_util
, or try the search function
.
Example #1
Source File: tf_graph_util.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def _load_graph(self): self.detection_graph = tf.Graph() with self.detection_graph.as_default() as default_graph: od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.frozen_graph_path, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') config = tf.ConfigProto() config.gpu_options.allow_growth = True config.log_device_placement = True self.category_index = label_map_util.create_category_index_from_labelmap(self.label_path, use_display_name=True) self.session = tf.Session(config=config, graph=default_graph) self.global_graph = default_graph
Example #2
Source File: tensorflow.py From Stone-Soup with MIT License | 6 votes |
def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Initialise TF graph and category index self._graph = tf.Graph() with self._graph.as_default(): od_graph_def = tf.compat.v1.GraphDef() with tf.compat.v1.gfile.GFile(str(self.model_path), 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') self._sess = tf.compat.v1.Session(graph=self._graph, config=self.session_config) self.category_index = lm_util.create_category_index_from_labelmap( self.labels_path, use_display_name=True) # Variables used in async mode if self.run_async: self._buffer = None # Initialise frame capture thread self._capture_thread = threading.Thread(target=self._capture) self._capture_thread.daemon = True self._thread_lock = threading.Lock() self._capture_thread.start()
Example #3
Source File: label_map_util_test.py From Elphas with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #4
Source File: label_map_util_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_create_category_index_from_labelmap_display(self): label_map_string = """ item { id:2 name:'cat' display_name:'meow' } item { id:1 name:'dog' display_name:'woof' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, label_map_util.create_category_index_from_labelmap( label_map_path, False)) self.assertDictEqual({ 1: { 'name': u'woof', 'id': 1 }, 2: { 'name': u'meow', 'id': 2 } }, label_map_util.create_category_index_from_labelmap(label_map_path))
Example #5
Source File: label_map_util_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #6
Source File: label_map_util_test.py From models with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap_display(self): label_map_string = """ item { id:2 name:'cat' display_name:'meow' } item { id:1 name:'dog' display_name:'woof' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, label_map_util.create_category_index_from_labelmap( label_map_path, False)) self.assertDictEqual({ 1: { 'name': u'woof', 'id': 1 }, 2: { 'name': u'meow', 'id': 2 } }, label_map_util.create_category_index_from_labelmap(label_map_path))
Example #7
Source File: label_map_util_test.py From models with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #8
Source File: label_map_util_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap_display(self): label_map_string = """ item { id:2 name:'cat' display_name:'meow' } item { id:1 name:'dog' display_name:'woof' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, label_map_util.create_category_index_from_labelmap( label_map_path, False)) self.assertDictEqual({ 1: { 'name': u'woof', 'id': 1 }, 2: { 'name': u'meow', 'id': 2 } }, label_map_util.create_category_index_from_labelmap(label_map_path))
Example #9
Source File: label_map_util_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #10
Source File: label_map_util_test.py From open-solution-googleai-object-detection with MIT License | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': 'dog', 'id': 1 }, 2: { 'name': 'cat', 'id': 2 } }, category_index)
Example #11
Source File: label_map_util_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap_display(self): label_map_string = """ item { id:2 name:'cat' display_name:'meow' } item { id:1 name:'dog' display_name:'woof' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, label_map_util.create_category_index_from_labelmap( label_map_path, False)) self.assertDictEqual({ 1: { 'name': u'woof', 'id': 1 }, 2: { 'name': u'meow', 'id': 2 } }, label_map_util.create_category_index_from_labelmap(label_map_path))
Example #12
Source File: label_map_util_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #13
Source File: label_map_util_test.py From AniSeg with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #14
Source File: label_map_util_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #15
Source File: label_map_util_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #16
Source File: label_map_util_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #17
Source File: label_map_util_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap_display(self): label_map_string = """ item { id:2 name:'cat' display_name:'meow' } item { id:1 name:'dog' display_name:'woof' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, label_map_util.create_category_index_from_labelmap( label_map_path, False)) self.assertDictEqual({ 1: { 'name': u'woof', 'id': 1 }, 2: { 'name': u'meow', 'id': 2 } }, label_map_util.create_category_index_from_labelmap(label_map_path))
Example #18
Source File: label_map_util_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #19
Source File: label_map_util_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #20
Source File: label_map_util_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #21
Source File: label_map_util_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #22
Source File: receiver.py From scarecrow with GNU General Public License v3.0 | 5 votes |
def main(conf, conf_path, label_path, **kwargs): """Main function for receiver Args: conf (dict): Configuration file conf_path (str): Configuration path (plugins) Yields: bool: Detection successful """ # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.abspath(label_path) category_index = label_map_util.create_category_index_from_labelmap( PATH_TO_LABELS, use_display_name=True) detection_model = load_model(conf['Tensorflow']['ModelUrl']) # Client Plugins loaded_plugins = load_plugins(plugins=conf['Plugins']['Enabled'].split( ','), conf_path=conf_path+'/plugins.d') # Start loop for res in receive(category_index, detection_model, conf['ZmqCamera']['IP'], conf['ZmqCamera']['Port'], conf['ZmqCamera']['Protocol'], int(conf['ZmqCamera']['Pattern']), float(conf['Detection']['min_detections']), float(conf['Detection']['min_confidence']), server_plugins=loaded_plugins, **kwargs): logger.debug('Received signal') if kwargs.get('use_sender_thread', False): send_async_messages(loaded_plugins) else: send_messages(loaded_plugins) # For downstream yield res
Example #23
Source File: label_map_util_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #24
Source File: label_map_util_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #25
Source File: label_map_util_test.py From Person-Detection-and-Tracking with MIT License | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #26
Source File: label_map_util_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 5 votes |
def test_create_category_index_from_labelmap(self): label_map_string = """ item { id:2 name:'cat' } item { id:1 name:'dog' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) category_index = label_map_util.create_category_index_from_labelmap( label_map_path) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, category_index)
Example #27
Source File: label_map_util_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def test_create_category_index_from_labelmap_display(self): label_map_string = """ item { id:2 name:'cat' display_name:'meow' } item { id:1 name:'dog' display_name:'woof' } """ label_map_path = os.path.join(self.get_temp_dir(), 'label_map.pbtxt') with tf.gfile.Open(label_map_path, 'wb') as f: f.write(label_map_string) self.assertDictEqual({ 1: { 'name': u'dog', 'id': 1 }, 2: { 'name': u'cat', 'id': 2 } }, label_map_util.create_category_index_from_labelmap( label_map_path, False)) self.assertDictEqual({ 1: { 'name': u'woof', 'id': 1 }, 2: { 'name': u'meow', 'id': 2 } }, label_map_util.create_category_index_from_labelmap(label_map_path))
Example #28
Source File: inference.py From object_centric_VAD with MIT License | 4 votes |
def vis_detection_result(graph,image_path,output_image_path): with graph.as_default(): ops=tf.get_default_graph().get_operations() all_tensor_names={output.name for op in ops for output in op.outputs} tensor_dict={} for key in [ 'num_detections','detection_boxes','detection_scores', 'detection_classes','detection_masks' ]: tensor_name=key+':0' if tensor_name in all_tensor_names: tensor_dict[key]=tf.get_default_graph().get_tensor_by_name(tensor_name) image_tensor=tf.get_default_graph().get_tensor_by_name('image_tensor:0') with tf.Session() as sess: print('get in the session') image = util.data_preprocessing(image_path,target_size=640) image_np = np.expand_dims(image, axis=0) output_dict=sess.run(tensor_dict,feed_dict={image_tensor:image_np}) # print(output_dict) # all outputs are float32 numpy arrays, so convert types as appropriate output_dict['num_detections'] = int(output_dict['num_detections'][0]) output_dict['detection_classes'] = output_dict[ 'detection_classes'][0].astype(np.int64) output_dict['detection_boxes'] = output_dict['detection_boxes'][0] output_dict['detection_scores'] = output_dict['detection_scores'][0] #print(output_dict) # return output_dict print('output_dict[\'detection_boxes\'] shape is {}'.format(output_dict['detection_boxes'].shape)) print('output_dict[\'detection_scores\'] shape is {}'.format(output_dict['detection_scores'].shape)) category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) image=vis_util.visualize_boxes_and_labels_on_image_array( image, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks'), use_normalized_coordinates=True, line_thickness=3,min_score_thresh=0.3) plt.imsave(output_image_path,image) sess.close()
Example #29
Source File: detect_image.py From hand-detection-tutorial with MIT License | 4 votes |
def detect_image(image_path): # load label map category_index = label_map_util.create_category_index_from_labelmap( PATH_TO_LABELS) # load detection graph detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # define input/output tensors image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # load input image img = cv2.imread(image_path) if img is None: sys.exit('failed to load image: %s' % image_path) img = img[..., ::-1] # BGR to RGB # run inference with detection_graph.as_default(): with tf.Session() as sess: boxes, scores, classes, _ = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: np.expand_dims(img, 0)}) # draw the results of the detection vis_util.visualize_boxes_and_labels_on_image_array( img, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=6, min_score_thresh=0.3) # save the output image img = img[..., ::-1] # RGB to BGR cv2.imwrite(OUTPUT_PATH, img) print('Output has been written to %s\n' % OUTPUT_PATH)