Python pandas.util.testing.getMixedTypeDict() Examples
The following are 22
code examples of pandas.util.testing.getMixedTypeDict().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_join.py From recruit with Apache License 2.0 | 6 votes |
def setup_method(self, method): # aggregate multiple columns self.df = DataFrame({'key1': get_test_data(), 'key2': get_test_data(), 'data1': np.random.randn(N), 'data2': np.random.randn(N)}) # exclude a couple keys for fun self.df = self.df[self.df['key2'] > 1] self.df2 = DataFrame({'key1': get_test_data(n=N // 5), 'key2': get_test_data(ngroups=NGROUPS // 2, n=N // 5), 'value': np.random.randn(N // 5)}) index, data = tm.getMixedTypeDict() self.target = DataFrame(data, index=index) # Join on string value self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']}, index=data['C'])
Example #2
Source File: test_api.py From recruit with Apache License 2.0 | 6 votes |
def test_transpose(self, float_frame): frame = float_frame dft = frame.T for idx, series in compat.iteritems(dft): for col, value in compat.iteritems(series): if np.isnan(value): assert np.isnan(frame[col][idx]) else: assert value == frame[col][idx] # mixed type index, data = tm.getMixedTypeDict() mixed = self.klass(data, index=index) mixed_T = mixed.T for col, s in compat.iteritems(mixed_T): assert s.dtype == np.object_
Example #3
Source File: test_api.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_transpose(self): frame = self.frame dft = frame.T for idx, series in compat.iteritems(dft): for col, value in compat.iteritems(series): if np.isnan(value): assert np.isnan(frame[col][idx]) else: assert value == frame[col][idx] # mixed type index, data = tm.getMixedTypeDict() mixed = self.klass(data, index=index) mixed_T = mixed.T for col, s in compat.iteritems(mixed_T): assert s.dtype == np.object_
Example #4
Source File: test_join.py From vnpy_crypto with MIT License | 6 votes |
def setup_method(self, method): # aggregate multiple columns self.df = DataFrame({'key1': get_test_data(), 'key2': get_test_data(), 'data1': np.random.randn(N), 'data2': np.random.randn(N)}) # exclude a couple keys for fun self.df = self.df[self.df['key2'] > 1] self.df2 = DataFrame({'key1': get_test_data(n=N // 5), 'key2': get_test_data(ngroups=NGROUPS // 2, n=N // 5), 'value': np.random.randn(N // 5)}) index, data = tm.getMixedTypeDict() self.target = DataFrame(data, index=index) # Join on string value self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']}, index=data['C'])
Example #5
Source File: test_join.py From twitter-stock-recommendation with MIT License | 6 votes |
def setup_method(self, method): # aggregate multiple columns self.df = DataFrame({'key1': get_test_data(), 'key2': get_test_data(), 'data1': np.random.randn(N), 'data2': np.random.randn(N)}) # exclude a couple keys for fun self.df = self.df[self.df['key2'] > 1] self.df2 = DataFrame({'key1': get_test_data(n=N // 5), 'key2': get_test_data(ngroups=NGROUPS // 2, n=N // 5), 'value': np.random.randn(N // 5)}) index, data = tm.getMixedTypeDict() self.target = DataFrame(data, index=index) # Join on string value self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']}, index=data['C'])
Example #6
Source File: test_api.py From vnpy_crypto with MIT License | 6 votes |
def test_transpose(self): frame = self.frame dft = frame.T for idx, series in compat.iteritems(dft): for col, value in compat.iteritems(series): if np.isnan(value): assert np.isnan(frame[col][idx]) else: assert value == frame[col][idx] # mixed type index, data = tm.getMixedTypeDict() mixed = self.klass(data, index=index) mixed_T = mixed.T for col, s in compat.iteritems(mixed_T): assert s.dtype == np.object_
Example #7
Source File: test_join.py From coffeegrindsize with MIT License | 6 votes |
def setup_method(self, method): # aggregate multiple columns self.df = DataFrame({'key1': get_test_data(), 'key2': get_test_data(), 'data1': np.random.randn(N), 'data2': np.random.randn(N)}) # exclude a couple keys for fun self.df = self.df[self.df['key2'] > 1] self.df2 = DataFrame({'key1': get_test_data(n=N // 5), 'key2': get_test_data(ngroups=NGROUPS // 2, n=N // 5), 'value': np.random.randn(N // 5)}) index, data = tm.getMixedTypeDict() self.target = DataFrame(data, index=index) # Join on string value self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']}, index=data['C'])
Example #8
Source File: test_join.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def setup_method(self, method): # aggregate multiple columns self.df = DataFrame({'key1': get_test_data(), 'key2': get_test_data(), 'data1': np.random.randn(N), 'data2': np.random.randn(N)}) # exclude a couple keys for fun self.df = self.df[self.df['key2'] > 1] self.df2 = DataFrame({'key1': get_test_data(n=N // 5), 'key2': get_test_data(ngroups=NGROUPS // 2, n=N // 5), 'value': np.random.randn(N // 5)}) index, data = tm.getMixedTypeDict() self.target = DataFrame(data, index=index) # Join on string value self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']}, index=data['C'])
Example #9
Source File: test_api.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_transpose(self): frame = self.frame dft = frame.T for idx, series in compat.iteritems(dft): for col, value in compat.iteritems(series): if np.isnan(value): assert np.isnan(frame[col][idx]) else: assert value == frame[col][idx] # mixed type index, data = tm.getMixedTypeDict() mixed = self.klass(data, index=index) mixed_T = mixed.T for col, s in compat.iteritems(mixed_T): assert s.dtype == np.object_
Example #10
Source File: test_api.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_transpose(self, float_frame): frame = float_frame dft = frame.T for idx, series in compat.iteritems(dft): for col, value in compat.iteritems(series): if np.isnan(value): assert np.isnan(frame[col][idx]) else: assert value == frame[col][idx] # mixed type index, data = tm.getMixedTypeDict() mixed = self.klass(data, index=index) mixed_T = mixed.T for col, s in compat.iteritems(mixed_T): assert s.dtype == np.object_
Example #11
Source File: test_join.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def setup_method(self, method): # aggregate multiple columns self.df = DataFrame({'key1': get_test_data(), 'key2': get_test_data(), 'data1': np.random.randn(N), 'data2': np.random.randn(N)}) # exclude a couple keys for fun self.df = self.df[self.df['key2'] > 1] self.df2 = DataFrame({'key1': get_test_data(n=N // 5), 'key2': get_test_data(ngroups=NGROUPS // 2, n=N // 5), 'value': np.random.randn(N // 5)}) index, data = tm.getMixedTypeDict() self.target = DataFrame(data, index=index) # Join on string value self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']}, index=data['C'])
Example #12
Source File: test_constructors.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_
Example #13
Source File: test_constructors.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_
Example #14
Source File: test_constructors.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_
Example #15
Source File: test_merge.py From Computable with MIT License | 5 votes |
def setUp(self): # aggregate multiple columns self.df = DataFrame({'key1': get_test_data(), 'key2': get_test_data(), 'data1': np.random.randn(N), 'data2': np.random.randn(N)}) # exclude a couple keys for fun self.df = self.df[self.df['key2'] > 1] self.df2 = DataFrame({'key1': get_test_data(n=N // 5), 'key2': get_test_data(ngroups=NGROUPS // 2, n=N // 5), 'value': np.random.randn(N // 5)}) index, data = tm.getMixedTypeDict() self.target = DataFrame(data, index=index) # Join on string value self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']}, index=data['C']) self.left = DataFrame({'key': ['a', 'b', 'c', 'd', 'e', 'e', 'a'], 'v1': np.random.randn(7)}) self.right = DataFrame({'v2': np.random.randn(4)}, index=['d', 'b', 'c', 'a'])
Example #16
Source File: test_constructors.py From vnpy_crypto with MIT License | 5 votes |
def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_
Example #17
Source File: test_constructors.py From recruit with Apache License 2.0 | 5 votes |
def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_
Example #18
Source File: test_apply.py From elasticintel with GNU General Public License v3.0 | 4 votes |
def test_map(self): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in compat.iteritems(merged): assert v == source[target[k]] # input could be a dict merged = target.map(source.to_dict()) for k, v in compat.iteritems(merged): assert v == source[target[k]] # function result = self.ts.map(lambda x: x * 2) tm.assert_series_equal(result, self.ts * 2) # GH 10324 a = Series([1, 2, 3, 4]) b = Series(["even", "odd", "even", "odd"], dtype="category") c = Series(["even", "odd", "even", "odd"]) exp = Series(["odd", "even", "odd", np.nan], dtype="category") tm.assert_series_equal(a.map(b), exp) exp = Series(["odd", "even", "odd", np.nan]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series([1, 2, 3, 4], index=Index(['b', 'c', 'd', 'e'])) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series(['B', 'C', 'D', 'E'], dtype='category', index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series(['B', 'C', 'D', 'E'], index=Index(['b', 'c', 'd', 'e'])) exp = Series(pd.Categorical([np.nan, 'B', 'C', 'D'], categories=['B', 'C', 'D', 'E'])) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 'B', 'C', 'D']) tm.assert_series_equal(a.map(c), exp)
Example #19
Source File: test_apply.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 4 votes |
def test_map(self, datetime_series): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in compat.iteritems(merged): assert v == source[target[k]] # input could be a dict merged = target.map(source.to_dict()) for k, v in compat.iteritems(merged): assert v == source[target[k]] # function result = datetime_series.map(lambda x: x * 2) tm.assert_series_equal(result, datetime_series * 2) # GH 10324 a = Series([1, 2, 3, 4]) b = Series(["even", "odd", "even", "odd"], dtype="category") c = Series(["even", "odd", "even", "odd"]) exp = Series(["odd", "even", "odd", np.nan], dtype="category") tm.assert_series_equal(a.map(b), exp) exp = Series(["odd", "even", "odd", np.nan]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series([1, 2, 3, 4], index=Index(['b', 'c', 'd', 'e'])) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series(['B', 'C', 'D', 'E'], dtype='category', index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series(['B', 'C', 'D', 'E'], index=Index(['b', 'c', 'd', 'e'])) exp = Series(pd.Categorical([np.nan, 'B', 'C', 'D'], categories=['B', 'C', 'D', 'E'])) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 'B', 'C', 'D']) tm.assert_series_equal(a.map(c), exp)
Example #20
Source File: test_apply.py From vnpy_crypto with MIT License | 4 votes |
def test_map(self): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in compat.iteritems(merged): assert v == source[target[k]] # input could be a dict merged = target.map(source.to_dict()) for k, v in compat.iteritems(merged): assert v == source[target[k]] # function result = self.ts.map(lambda x: x * 2) tm.assert_series_equal(result, self.ts * 2) # GH 10324 a = Series([1, 2, 3, 4]) b = Series(["even", "odd", "even", "odd"], dtype="category") c = Series(["even", "odd", "even", "odd"]) exp = Series(["odd", "even", "odd", np.nan], dtype="category") tm.assert_series_equal(a.map(b), exp) exp = Series(["odd", "even", "odd", np.nan]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series([1, 2, 3, 4], index=Index(['b', 'c', 'd', 'e'])) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series(['B', 'C', 'D', 'E'], dtype='category', index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series(['B', 'C', 'D', 'E'], index=Index(['b', 'c', 'd', 'e'])) exp = Series(pd.Categorical([np.nan, 'B', 'C', 'D'], categories=['B', 'C', 'D', 'E'])) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 'B', 'C', 'D']) tm.assert_series_equal(a.map(c), exp)
Example #21
Source File: test_apply.py From twitter-stock-recommendation with MIT License | 4 votes |
def test_map(self): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in compat.iteritems(merged): assert v == source[target[k]] # input could be a dict merged = target.map(source.to_dict()) for k, v in compat.iteritems(merged): assert v == source[target[k]] # function result = self.ts.map(lambda x: x * 2) tm.assert_series_equal(result, self.ts * 2) # GH 10324 a = Series([1, 2, 3, 4]) b = Series(["even", "odd", "even", "odd"], dtype="category") c = Series(["even", "odd", "even", "odd"]) exp = Series(["odd", "even", "odd", np.nan], dtype="category") tm.assert_series_equal(a.map(b), exp) exp = Series(["odd", "even", "odd", np.nan]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series([1, 2, 3, 4], index=Index(['b', 'c', 'd', 'e'])) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series(['B', 'C', 'D', 'E'], dtype='category', index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series(['B', 'C', 'D', 'E'], index=Index(['b', 'c', 'd', 'e'])) exp = Series(pd.Categorical([np.nan, 'B', 'C', 'D'], categories=['B', 'C', 'D', 'E'])) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 'B', 'C', 'D']) tm.assert_series_equal(a.map(c), exp)
Example #22
Source File: test_apply.py From recruit with Apache License 2.0 | 4 votes |
def test_map(self, datetime_series): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in compat.iteritems(merged): assert v == source[target[k]] # input could be a dict merged = target.map(source.to_dict()) for k, v in compat.iteritems(merged): assert v == source[target[k]] # function result = datetime_series.map(lambda x: x * 2) tm.assert_series_equal(result, datetime_series * 2) # GH 10324 a = Series([1, 2, 3, 4]) b = Series(["even", "odd", "even", "odd"], dtype="category") c = Series(["even", "odd", "even", "odd"]) exp = Series(["odd", "even", "odd", np.nan], dtype="category") tm.assert_series_equal(a.map(b), exp) exp = Series(["odd", "even", "odd", np.nan]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series([1, 2, 3, 4], index=Index(['b', 'c', 'd', 'e'])) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 1, 2, 3]) tm.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series(['B', 'C', 'D', 'E'], dtype='category', index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series(['B', 'C', 'D', 'E'], index=Index(['b', 'c', 'd', 'e'])) exp = Series(pd.Categorical([np.nan, 'B', 'C', 'D'], categories=['B', 'C', 'D', 'E'])) tm.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 'B', 'C', 'D']) tm.assert_series_equal(a.map(c), exp)