Python pandas.util.testing.makeStringIndex() Examples

The following are 30 code examples of pandas.util.testing.makeStringIndex(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pandas.util.testing , or try the search function .
Example #1
Source File: test_base.py    From recruit with Apache License 2.0 6 votes vote down vote up
def setup_method(self, method):
        self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
                            strIndex=tm.makeStringIndex(100),
                            dateIndex=tm.makeDateIndex(100),
                            periodIndex=tm.makePeriodIndex(100),
                            tdIndex=tm.makeTimedeltaIndex(100),
                            intIndex=tm.makeIntIndex(100),
                            uintIndex=tm.makeUIntIndex(100),
                            rangeIndex=tm.makeRangeIndex(100),
                            floatIndex=tm.makeFloatIndex(100),
                            boolIndex=Index([True, False]),
                            catIndex=tm.makeCategoricalIndex(100),
                            empty=Index([]),
                            tuples=MultiIndex.from_tuples(lzip(
                                ['foo', 'bar', 'baz'], [1, 2, 3])),
                            repeats=Index([0, 0, 1, 1, 2, 2]))
        self.setup_indices() 
Example #2
Source File: test_base.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def setup_method(self, method):
        self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
                            strIndex=tm.makeStringIndex(100),
                            dateIndex=tm.makeDateIndex(100),
                            periodIndex=tm.makePeriodIndex(100),
                            tdIndex=tm.makeTimedeltaIndex(100),
                            intIndex=tm.makeIntIndex(100),
                            uintIndex=tm.makeUIntIndex(100),
                            rangeIndex=tm.makeRangeIndex(100),
                            floatIndex=tm.makeFloatIndex(100),
                            boolIndex=Index([True, False]),
                            catIndex=tm.makeCategoricalIndex(100),
                            empty=Index([]),
                            tuples=MultiIndex.from_tuples(lzip(
                                ['foo', 'bar', 'baz'], [1, 2, 3])),
                            repeats=Index([0, 0, 1, 1, 2, 2]))
        self.setup_indices() 
Example #3
Source File: test_reductions.py    From recruit with Apache License 2.0 6 votes vote down vote up
def get_objs():
    indexes = [
        tm.makeBoolIndex(10, name='a'),
        tm.makeIntIndex(10, name='a'),
        tm.makeFloatIndex(10, name='a'),
        tm.makeDateIndex(10, name='a'),
        tm.makeDateIndex(10, name='a').tz_localize(tz='US/Eastern'),
        tm.makePeriodIndex(10, name='a'),
        tm.makeStringIndex(10, name='a'),
        tm.makeUnicodeIndex(10, name='a')
    ]

    arr = np.random.randn(10)
    series = [Series(arr, index=idx, name='a') for idx in indexes]

    objs = indexes + series
    return objs 
Example #4
Source File: test_base.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def setup_method(self, method):
        self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
                            strIndex=tm.makeStringIndex(100),
                            dateIndex=tm.makeDateIndex(100),
                            periodIndex=tm.makePeriodIndex(100),
                            tdIndex=tm.makeTimedeltaIndex(100),
                            intIndex=tm.makeIntIndex(100),
                            uintIndex=tm.makeUIntIndex(100),
                            rangeIndex=tm.makeRangeIndex(100),
                            floatIndex=tm.makeFloatIndex(100),
                            boolIndex=Index([True, False]),
                            catIndex=tm.makeCategoricalIndex(100),
                            empty=Index([]),
                            tuples=MultiIndex.from_tuples(lzip(
                                ['foo', 'bar', 'baz'], [1, 2, 3])),
                            repeats=Index([0, 0, 1, 1, 2, 2]))
        self.setup_indices() 
Example #5
Source File: test_base.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def setup_method(self, method):
        self.bool_index = tm.makeBoolIndex(10, name='a')
        self.int_index = tm.makeIntIndex(10, name='a')
        self.float_index = tm.makeFloatIndex(10, name='a')
        self.dt_index = tm.makeDateIndex(10, name='a')
        self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize(
            tz='US/Eastern')
        self.period_index = tm.makePeriodIndex(10, name='a')
        self.string_index = tm.makeStringIndex(10, name='a')
        self.unicode_index = tm.makeUnicodeIndex(10, name='a')

        arr = np.random.randn(10)
        self.int_series = Series(arr, index=self.int_index, name='a')
        self.float_series = Series(arr, index=self.float_index, name='a')
        self.dt_series = Series(arr, index=self.dt_index, name='a')
        self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True)
        self.period_series = Series(arr, index=self.period_index, name='a')
        self.string_series = Series(arr, index=self.string_index, name='a')

        types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string',
                 'unicode']
        fmts = ["{0}_{1}".format(t, f)
                for t in types for f in ['index', 'series']]
        self.objs = [getattr(self, f)
                     for f in fmts if getattr(self, f, None) is not None] 
Example #6
Source File: test_constructors.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_constructor_dict_cast(self):
        # cast float tests
        test_data = {
            'A': {'1': 1, '2': 2},
            'B': {'1': '1', '2': '2', '3': '3'},
        }
        frame = DataFrame(test_data, dtype=float)
        assert len(frame) == 3
        assert frame['B'].dtype == np.float64
        assert frame['A'].dtype == np.float64

        frame = DataFrame(test_data)
        assert len(frame) == 3
        assert frame['B'].dtype == np.object_
        assert frame['A'].dtype == np.float64

        # can't cast to float
        test_data = {
            'A': dict(zip(range(20), tm.makeStringIndex(20))),
            'B': dict(zip(range(15), randn(15)))
        }
        frame = DataFrame(test_data, dtype=float)
        assert len(frame) == 20
        assert frame['A'].dtype == np.object_
        assert frame['B'].dtype == np.float64 
Example #7
Source File: test_packers.py    From recruit with Apache License 2.0 6 votes vote down vote up
def setup_method(self, method):
        super(TestIndex, self).setup_method(method)

        self.d = {
            'string': tm.makeStringIndex(100),
            'date': tm.makeDateIndex(100),
            'int': tm.makeIntIndex(100),
            'rng': tm.makeRangeIndex(100),
            'float': tm.makeFloatIndex(100),
            'empty': Index([]),
            'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])),
            'period': Index(period_range('2012-1-1', freq='M', periods=3)),
            'date2': Index(date_range('2013-01-1', periods=10)),
            'bdate': Index(bdate_range('2013-01-02', periods=10)),
            'cat': tm.makeCategoricalIndex(100),
            'interval': tm.makeIntervalIndex(100),
            'timedelta': tm.makeTimedeltaIndex(100, 'H')
        }

        self.mi = {
            'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'),
                                           ('foo', 'two'),
                                           ('qux', 'one'), ('qux', 'two')],
                                          names=['first', 'second']),
        } 
Example #8
Source File: test_base.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def setup_method(self, method):
        self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
                            strIndex=tm.makeStringIndex(100),
                            dateIndex=tm.makeDateIndex(100),
                            periodIndex=tm.makePeriodIndex(100),
                            tdIndex=tm.makeTimedeltaIndex(100),
                            intIndex=tm.makeIntIndex(100),
                            uintIndex=tm.makeUIntIndex(100),
                            rangeIndex=tm.makeRangeIndex(100),
                            floatIndex=tm.makeFloatIndex(100),
                            boolIndex=Index([True, False]),
                            catIndex=tm.makeCategoricalIndex(100),
                            empty=Index([]),
                            tuples=MultiIndex.from_tuples(lzip(
                                ['foo', 'bar', 'baz'], [1, 2, 3])),
                            repeats=Index([0, 0, 1, 1, 2, 2]))
        self.setup_indices() 
Example #9
Source File: test_base.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def setup_method(self, method):
        self.bool_index = tm.makeBoolIndex(10, name='a')
        self.int_index = tm.makeIntIndex(10, name='a')
        self.float_index = tm.makeFloatIndex(10, name='a')
        self.dt_index = tm.makeDateIndex(10, name='a')
        self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize(
            tz='US/Eastern')
        self.period_index = tm.makePeriodIndex(10, name='a')
        self.string_index = tm.makeStringIndex(10, name='a')
        self.unicode_index = tm.makeUnicodeIndex(10, name='a')

        arr = np.random.randn(10)
        self.int_series = Series(arr, index=self.int_index, name='a')
        self.float_series = Series(arr, index=self.float_index, name='a')
        self.dt_series = Series(arr, index=self.dt_index, name='a')
        self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True)
        self.period_series = Series(arr, index=self.period_index, name='a')
        self.string_series = Series(arr, index=self.string_index, name='a')

        types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string',
                 'unicode']
        fmts = ["{0}_{1}".format(t, f)
                for t in types for f in ['index', 'series']]
        self.objs = [getattr(self, f)
                     for f in fmts if getattr(self, f, None) is not None] 
Example #10
Source File: test_packers.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def setup_method(self, method):
        super(TestIndex, self).setup_method(method)

        self.d = {
            'string': tm.makeStringIndex(100),
            'date': tm.makeDateIndex(100),
            'int': tm.makeIntIndex(100),
            'rng': tm.makeRangeIndex(100),
            'float': tm.makeFloatIndex(100),
            'empty': Index([]),
            'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])),
            'period': Index(period_range('2012-1-1', freq='M', periods=3)),
            'date2': Index(date_range('2013-01-1', periods=10)),
            'bdate': Index(bdate_range('2013-01-02', periods=10)),
            'cat': tm.makeCategoricalIndex(100)
        }

        self.mi = {
            'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'),
                                           ('foo', 'two'),
                                           ('qux', 'one'), ('qux', 'two')],
                                          names=['first', 'second']),
        } 
Example #11
Source File: test_to_html.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_to_html_filename(self):
        biggie = DataFrame({'A': np.random.randn(200),
                            'B': tm.makeStringIndex(200)},
                           index=lrange(200))

        biggie.loc[:20, 'A'] = np.nan
        biggie.loc[:20, 'B'] = np.nan
        with tm.ensure_clean('test.html') as path:
            biggie.to_html(path)
            with open(path, 'r') as f:
                s = biggie.to_html()
                s2 = f.read()
                assert s == s2

        frame = DataFrame(index=np.arange(200))
        with tm.ensure_clean('test.html') as path:
            frame.to_html(path)
            with open(path, 'r') as f:
                assert frame.to_html() == f.read() 
Example #12
Source File: test_constructors.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_constructor_dict_cast(self):
        # cast float tests
        test_data = {
            'A': {'1': 1, '2': 2},
            'B': {'1': '1', '2': '2', '3': '3'},
        }
        frame = DataFrame(test_data, dtype=float)
        assert len(frame) == 3
        assert frame['B'].dtype == np.float64
        assert frame['A'].dtype == np.float64

        frame = DataFrame(test_data)
        assert len(frame) == 3
        assert frame['B'].dtype == np.object_
        assert frame['A'].dtype == np.float64

        # can't cast to float
        test_data = {
            'A': dict(zip(range(20), tm.makeStringIndex(20))),
            'B': dict(zip(range(15), randn(15)))
        }
        frame = DataFrame(test_data, dtype=float)
        assert len(frame) == 20
        assert frame['A'].dtype == np.object_
        assert frame['B'].dtype == np.float64 
Example #13
Source File: test_to_html.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_to_html_filename(self):
        biggie = DataFrame({'A': np.random.randn(200),
                            'B': tm.makeStringIndex(200)},
                           index=lrange(200))

        biggie.loc[:20, 'A'] = np.nan
        biggie.loc[:20, 'B'] = np.nan
        with tm.ensure_clean('test.html') as path:
            biggie.to_html(path)
            with open(path, 'r') as f:
                s = biggie.to_html()
                s2 = f.read()
                assert s == s2

        frame = DataFrame(index=np.arange(200))
        with tm.ensure_clean('test.html') as path:
            frame.to_html(path)
            with open(path, 'r') as f:
                assert frame.to_html() == f.read() 
Example #14
Source File: test_packers.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def setup_method(self, method):
        super(TestIndex, self).setup_method(method)

        self.d = {
            'string': tm.makeStringIndex(100),
            'date': tm.makeDateIndex(100),
            'int': tm.makeIntIndex(100),
            'rng': tm.makeRangeIndex(100),
            'float': tm.makeFloatIndex(100),
            'empty': Index([]),
            'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])),
            'period': Index(period_range('2012-1-1', freq='M', periods=3)),
            'date2': Index(date_range('2013-01-1', periods=10)),
            'bdate': Index(bdate_range('2013-01-02', periods=10)),
            'cat': tm.makeCategoricalIndex(100),
            'interval': tm.makeIntervalIndex(100),
            'timedelta': tm.makeTimedeltaIndex(100, 'H')
        }

        self.mi = {
            'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'),
                                           ('foo', 'two'),
                                           ('qux', 'one'), ('qux', 'two')],
                                          names=['first', 'second']),
        } 
Example #15
Source File: test_base.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def setup_method(self, method):
        self.bool_index = tm.makeBoolIndex(10, name='a')
        self.int_index = tm.makeIntIndex(10, name='a')
        self.float_index = tm.makeFloatIndex(10, name='a')
        self.dt_index = tm.makeDateIndex(10, name='a')
        self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize(
            tz='US/Eastern')
        self.period_index = tm.makePeriodIndex(10, name='a')
        self.string_index = tm.makeStringIndex(10, name='a')
        self.unicode_index = tm.makeUnicodeIndex(10, name='a')

        arr = np.random.randn(10)
        self.int_series = Series(arr, index=self.int_index, name='a')
        self.float_series = Series(arr, index=self.float_index, name='a')
        self.dt_series = Series(arr, index=self.dt_index, name='a')
        self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True)
        self.period_series = Series(arr, index=self.period_index, name='a')
        self.string_series = Series(arr, index=self.string_index, name='a')

        types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string',
                 'unicode']
        fmts = ["{0}_{1}".format(t, f)
                for t in types for f in ['index', 'series']]
        self.objs = [getattr(self, f)
                     for f in fmts if getattr(self, f, None) is not None] 
Example #16
Source File: test_packers.py    From Computable with MIT License 6 votes vote down vote up
def setUp(self):
        super(TestIndex, self).setUp()

        self.d = {
            'string': tm.makeStringIndex(100),
            'date': tm.makeDateIndex(100),
            'int': tm.makeIntIndex(100),
            'float': tm.makeFloatIndex(100),
            'empty': Index([]),
            'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])),
            'period': Index(period_range('2012-1-1', freq='M', periods=3)),
            'date2': Index(date_range('2013-01-1', periods=10)),
            'bdate': Index(bdate_range('2013-01-02', periods=10)),
        }

        self.mi = {
            'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'),
                                           ('qux', 'one'), ('qux', 'two')], names=['first', 'second']),
        } 
Example #17
Source File: test_base.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def setup_method(self, method):
        self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
                            strIndex=tm.makeStringIndex(100),
                            dateIndex=tm.makeDateIndex(100),
                            periodIndex=tm.makePeriodIndex(100),
                            tdIndex=tm.makeTimedeltaIndex(100),
                            intIndex=tm.makeIntIndex(100),
                            uintIndex=tm.makeUIntIndex(100),
                            rangeIndex=tm.makeRangeIndex(100),
                            floatIndex=tm.makeFloatIndex(100),
                            boolIndex=Index([True, False]),
                            catIndex=tm.makeCategoricalIndex(100),
                            empty=Index([]),
                            tuples=MultiIndex.from_tuples(lzip(
                                ['foo', 'bar', 'baz'], [1, 2, 3])),
                            repeats=Index([0, 0, 1, 1, 2, 2]))
        self.setup_indices() 
Example #18
Source File: test_base.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def setup_method(self, method):
        self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100),
                            strIndex=tm.makeStringIndex(100),
                            dateIndex=tm.makeDateIndex(100),
                            periodIndex=tm.makePeriodIndex(100),
                            tdIndex=tm.makeTimedeltaIndex(100),
                            intIndex=tm.makeIntIndex(100),
                            uintIndex=tm.makeUIntIndex(100),
                            rangeIndex=tm.makeIntIndex(100),
                            floatIndex=tm.makeFloatIndex(100),
                            boolIndex=Index([True, False]),
                            catIndex=tm.makeCategoricalIndex(100),
                            empty=Index([]),
                            tuples=MultiIndex.from_tuples(lzip(
                                ['foo', 'bar', 'baz'], [1, 2, 3])),
                            repeats=Index([0, 0, 1, 1, 2, 2]))
        self.setup_indices() 
Example #19
Source File: test_packers.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def setup_method(self, method):
        super(TestIndex, self).setup_method(method)

        self.d = {
            'string': tm.makeStringIndex(100),
            'date': tm.makeDateIndex(100),
            'int': tm.makeIntIndex(100),
            'rng': tm.makeRangeIndex(100),
            'float': tm.makeFloatIndex(100),
            'empty': Index([]),
            'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])),
            'period': Index(period_range('2012-1-1', freq='M', periods=3)),
            'date2': Index(date_range('2013-01-1', periods=10)),
            'bdate': Index(bdate_range('2013-01-02', periods=10)),
            'cat': tm.makeCategoricalIndex(100),
            'interval': tm.makeIntervalIndex(100),
            'timedelta': tm.makeTimedeltaIndex(100, 'H')
        }

        self.mi = {
            'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'),
                                           ('foo', 'two'),
                                           ('qux', 'one'), ('qux', 'two')],
                                          names=['first', 'second']),
        } 
Example #20
Source File: test_constructors.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_constructor_dict_cast(self):
        # cast float tests
        test_data = {
            'A': {'1': 1, '2': 2},
            'B': {'1': '1', '2': '2', '3': '3'},
        }
        frame = DataFrame(test_data, dtype=float)
        assert len(frame) == 3
        assert frame['B'].dtype == np.float64
        assert frame['A'].dtype == np.float64

        frame = DataFrame(test_data)
        assert len(frame) == 3
        assert frame['B'].dtype == np.object_
        assert frame['A'].dtype == np.float64

        # can't cast to float
        test_data = {
            'A': dict(zip(range(20), tm.makeStringIndex(20))),
            'B': dict(zip(range(15), randn(15)))
        }
        frame = DataFrame(test_data, dtype=float)
        assert len(frame) == 20
        assert frame['A'].dtype == np.object_
        assert frame['B'].dtype == np.float64 
Example #21
Source File: test_reductions.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def get_objs():
    indexes = [
        tm.makeBoolIndex(10, name='a'),
        tm.makeIntIndex(10, name='a'),
        tm.makeFloatIndex(10, name='a'),
        tm.makeDateIndex(10, name='a'),
        tm.makeDateIndex(10, name='a').tz_localize(tz='US/Eastern'),
        tm.makePeriodIndex(10, name='a'),
        tm.makeStringIndex(10, name='a'),
        tm.makeUnicodeIndex(10, name='a')
    ]

    arr = np.random.randn(10)
    series = [Series(arr, index=idx, name='a') for idx in indexes]

    objs = indexes + series
    return objs 
Example #22
Source File: test_to_html.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_to_html_filename(self):
        biggie = DataFrame({'A': np.random.randn(200),
                            'B': tm.makeStringIndex(200)},
                           index=lrange(200))

        biggie.loc[:20, 'A'] = np.nan
        biggie.loc[:20, 'B'] = np.nan
        with tm.ensure_clean('test.html') as path:
            biggie.to_html(path)
            with open(path, 'r') as f:
                s = biggie.to_html()
                s2 = f.read()
                assert s == s2

        frame = DataFrame(index=np.arange(200))
        with tm.ensure_clean('test.html') as path:
            frame.to_html(path)
            with open(path, 'r') as f:
                assert frame.to_html() == f.read() 
Example #23
Source File: test_floats.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_scalar_error(self):

        # GH 4892
        # float_indexers should raise exceptions
        # on appropriate Index types & accessors
        # this duplicates the code below
        # but is spefically testing for the error
        # message

        for index in [tm.makeStringIndex, tm.makeUnicodeIndex,
                      tm.makeCategoricalIndex,
                      tm.makeDateIndex, tm.makeTimedeltaIndex,
                      tm.makePeriodIndex, tm.makeIntIndex,
                      tm.makeRangeIndex]:

            i = index(5)

            s = Series(np.arange(len(i)), index=i)

            def f():
                s.iloc[3.0]
            tm.assert_raises_regex(TypeError,
                                   'cannot do positional indexing',
                                   f)

            def f():
                s.iloc[3.0] = 0
            pytest.raises(TypeError, f) 
Example #24
Source File: test_object.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_sub_fail(self):
        index = tm.makeStringIndex(100)
        with pytest.raises(TypeError):
            index - 'a'
        with pytest.raises(TypeError):
            index - index
        with pytest.raises(TypeError):
            index - index.tolist()
        with pytest.raises(TypeError):
            index.tolist() - index 
Example #25
Source File: test_object.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_add(self):
        index = tm.makeStringIndex(100)
        expected = pd.Index(index.values * 2)
        tm.assert_index_equal(index + index, expected)
        tm.assert_index_equal(index + index.tolist(), expected)
        tm.assert_index_equal(index.tolist() + index, expected)

        # test add and radd
        index = pd.Index(list('abc'))
        expected = pd.Index(['a1', 'b1', 'c1'])
        tm.assert_index_equal(index + '1', expected)
        expected = pd.Index(['1a', '1b', '1c'])
        tm.assert_index_equal('1' + index, expected) 
Example #26
Source File: test_combine_concat.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_combine_first(self):
        values = tm.makeIntIndex(20).values.astype(float)
        series = Series(values, index=tm.makeIntIndex(20))

        series_copy = series * 2
        series_copy[::2] = np.NaN

        # nothing used from the input
        combined = series.combine_first(series_copy)

        tm.assert_series_equal(combined, series)

        # Holes filled from input
        combined = series_copy.combine_first(series)
        assert np.isfinite(combined).all()

        tm.assert_series_equal(combined[::2], series[::2])
        tm.assert_series_equal(combined[1::2], series_copy[1::2])

        # mixed types
        index = tm.makeStringIndex(20)
        floats = Series(tm.randn(20), index=index)
        strings = Series(tm.makeStringIndex(10), index=index[::2])

        combined = strings.combine_first(floats)

        tm.assert_series_equal(strings, combined.loc[index[::2]])
        tm.assert_series_equal(floats[1::2].astype(object),
                               combined.loc[index[1::2]])

        # corner case
        s = Series([1., 2, 3], index=[0, 1, 2])
        result = s.combine_first(Series([], index=[]))
        assert_series_equal(s, result) 
Example #27
Source File: test_repr_info.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_repr_mixed_big(self):
        # big mixed
        biggie = DataFrame({'A': np.random.randn(200),
                            'B': tm.makeStringIndex(200)},
                           index=lrange(200))
        biggie.loc[:20, 'A'] = nan
        biggie.loc[:20, 'B'] = nan

        foo = repr(biggie)  # noqa 
Example #28
Source File: test_frequencies.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def test_invalid_index_types(self):

        # test all index types
        for i in [tm.makeIntIndex(10), tm.makeFloatIndex(10),
                  tm.makePeriodIndex(10)]:
            pytest.raises(TypeError, lambda: frequencies.infer_freq(i))

        # GH 10822
        # odd error message on conversions to datetime for unicode
        if not is_platform_windows():
            for i in [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)]:
                pytest.raises(ValueError, lambda: frequencies.infer_freq(i)) 
Example #29
Source File: test_grouping.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_grouper_index_types(self):
        # related GH5375
        # groupby misbehaving when using a Floatlike index
        df = DataFrame(np.arange(10).reshape(5, 2), columns=list('AB'))
        for index in [tm.makeFloatIndex, tm.makeStringIndex,
                      tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex,
                      tm.makePeriodIndex]:

            df.index = index(len(df))
            df.groupby(list('abcde')).apply(lambda x: x)

            df.index = list(reversed(df.index.tolist()))
            df.groupby(list('abcde')).apply(lambda x: x) 
Example #30
Source File: test_format.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_to_string_truncate_indices(self):
        for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex,
                      tm.makeDateIndex, tm.makePeriodIndex]:
            for column in [tm.makeStringIndex]:
                for h in [10, 20]:
                    for w in [10, 20]:
                        with option_context("display.expand_frame_repr",
                                            False):
                            df = DataFrame(index=index(h), columns=column(w))
                            with option_context("display.max_rows", 15):
                                if h == 20:
                                    assert has_vertically_truncated_repr(df)
                                else:
                                    assert not has_vertically_truncated_repr(
                                        df)
                            with option_context("display.max_columns", 15):
                                if w == 20:
                                    assert has_horizontally_truncated_repr(df)
                                else:
                                    assert not (
                                        has_horizontally_truncated_repr(df))
                            with option_context("display.max_rows", 15,
                                                "display.max_columns", 15):
                                if h == 20 and w == 20:
                                    assert has_doubly_truncated_repr(df)
                                else:
                                    assert not has_doubly_truncated_repr(
                                        df)