Python pandas.util.testing.use_numexpr() Examples
The following are 15
code examples of pandas.util.testing.use_numexpr().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_expressions.py From recruit with Apache License 2.0 | 5 votes |
def test_boolean_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: f11 = f f12 = f + 1 f21 = f2 f22 = f2 + 1 for op, op_str in [('gt', '>'), ('lt', '<'), ('ge', '>='), ('le', '<='), ('eq', '=='), ('ne', '!=')]: op = getattr(operator, op) result = expr._can_use_numexpr(op, op_str, f11, f12, 'evaluate') assert result != f11._is_mixed_type result = expr.evaluate(op, op_str, f11, f12, use_numexpr=True) expected = expr.evaluate(op, op_str, f11, f12, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f21, f22, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #2
Source File: test_expressions.py From vnpy_crypto with MIT License | 5 votes |
def test_boolean_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: f11 = f f12 = f + 1 f21 = f2 f22 = f2 + 1 for op, op_str in [('gt', '>'), ('lt', '<'), ('ge', '>='), ('le', '<='), ('eq', '=='), ('ne', '!=')]: op = getattr(operator, op) result = expr._can_use_numexpr(op, op_str, f11, f12, 'evaluate') assert result != f11._is_mixed_type result = expr.evaluate(op, op_str, f11, f12, use_numexpr=True) expected = expr.evaluate(op, op_str, f11, f12, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f21, f22, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #3
Source File: test_expressions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_boolean_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: f11 = f f12 = f + 1 f21 = f2 f22 = f2 + 1 for op, op_str in [('gt', '>'), ('lt', '<'), ('ge', '>='), ('le', '<='), ('eq', '=='), ('ne', '!=')]: op = getattr(operator, op) result = expr._can_use_numexpr(op, op_str, f11, f12, 'evaluate') assert result != f11._is_mixed_type result = expr.evaluate(op, op_str, f11, f12, use_numexpr=True) expected = expr.evaluate(op, op_str, f11, f12, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f21, f22, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #4
Source File: test_expressions.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_boolean_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: f11 = f f12 = f + 1 f21 = f2 f22 = f2 + 1 for op, op_str in [('gt', '>'), ('lt', '<'), ('ge', '>='), ('le', '<='), ('eq', '=='), ('ne', '!=')]: op = getattr(operator, op) result = expr._can_use_numexpr(op, op_str, f11, f12, 'evaluate') assert result != f11._is_mixed_type result = expr.evaluate(op, op_str, f11, f12, use_numexpr=True) expected = expr.evaluate(op, op_str, f11, f12, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f21, f22, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #5
Source File: test_expressions.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_boolean_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: f11 = f f12 = f + 1 f21 = f2 f22 = f2 + 1 for op, op_str in [('gt', '>'), ('lt', '<'), ('ge', '>='), ('le', '<='), ('eq', '=='), ('ne', '!=')]: op = getattr(operator, op) result = expr._can_use_numexpr(op, op_str, f11, f12, 'evaluate') assert result != f11._is_mixed_type result = expr.evaluate(op, op_str, f11, f12, use_numexpr=True) expected = expr.evaluate(op, op_str, f11, f12, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f21, f22, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #6
Source File: test_expressions.py From recruit with Apache License 2.0 | 4 votes |
def test_binary_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: for op, op_str in [('add', '+'), ('sub', '-'), ('mul', '*'), ('div', '/'), ('pow', '**')]: if op == 'pow': continue if op == 'div': op = getattr(operator, 'truediv', None) else: op = getattr(operator, op, None) if op is not None: result = expr._can_use_numexpr(op, op_str, f, f, 'evaluate') assert result != f._is_mixed_type result = expr.evaluate(op, op_str, f, f, use_numexpr=True) expected = expr.evaluate(op, op_str, f, f, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f2, f2, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #7
Source File: test_expressions.py From recruit with Apache License 2.0 | 4 votes |
def test_bool_ops_warn_on_arithmetic(self): n = 10 df = DataFrame({'a': np.random.rand(n) > 0.5, 'b': np.random.rand(n) > 0.5}) names = 'add', 'mul', 'sub' ops = '+', '*', '-' subs = {'+': '|', '*': '&', '-': '^'} sub_funcs = {'|': 'or_', '&': 'and_', '^': 'xor'} for op, name in zip(ops, names): f = getattr(operator, name) fe = getattr(operator, sub_funcs[subs[op]]) # >= 1.13.0 these are now TypeErrors if op == '-' and not _np_version_under1p13: continue with tm.use_numexpr(True, min_elements=5): with tm.assert_produces_warning(check_stacklevel=False): r = f(df, df) e = fe(df, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, df.b) e = fe(df.a, df.b) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, True) e = fe(df.a, True) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df.a) e = fe(False, df.a) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df) e = fe(False, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df, True) e = fe(df, True) tm.assert_frame_equal(r, e)
Example #8
Source File: test_expressions.py From vnpy_crypto with MIT License | 4 votes |
def test_binary_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: for op, op_str in [('add', '+'), ('sub', '-'), ('mul', '*'), ('div', '/'), ('pow', '**')]: # numpy >= 1.11 doesn't handle integers # raised to integer powers # https://github.com/pandas-dev/pandas/issues/15363 if op == 'pow' and not _np_version_under1p11: continue if op == 'div': op = getattr(operator, 'truediv', None) else: op = getattr(operator, op, None) if op is not None: result = expr._can_use_numexpr(op, op_str, f, f, 'evaluate') assert result != f._is_mixed_type result = expr.evaluate(op, op_str, f, f, use_numexpr=True) expected = expr.evaluate(op, op_str, f, f, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f2, f2, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #9
Source File: test_expressions.py From vnpy_crypto with MIT License | 4 votes |
def test_bool_ops_warn_on_arithmetic(self): n = 10 df = DataFrame({'a': np.random.rand(n) > 0.5, 'b': np.random.rand(n) > 0.5}) names = 'add', 'mul', 'sub' ops = '+', '*', '-' subs = {'+': '|', '*': '&', '-': '^'} sub_funcs = {'|': 'or_', '&': 'and_', '^': 'xor'} for op, name in zip(ops, names): f = getattr(operator, name) fe = getattr(operator, sub_funcs[subs[op]]) # >= 1.13.0 these are now TypeErrors if op == '-' and not _np_version_under1p13: continue with tm.use_numexpr(True, min_elements=5): with tm.assert_produces_warning(check_stacklevel=False): r = f(df, df) e = fe(df, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, df.b) e = fe(df.a, df.b) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, True) e = fe(df.a, True) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df.a) e = fe(False, df.a) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df) e = fe(False, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df, True) e = fe(df, True) tm.assert_frame_equal(r, e)
Example #10
Source File: test_expressions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 4 votes |
def test_binary_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: for op, op_str in [('add', '+'), ('sub', '-'), ('mul', '*'), ('div', '/'), ('pow', '**')]: if op == 'pow': continue if op == 'div': op = getattr(operator, 'truediv', None) else: op = getattr(operator, op, None) if op is not None: result = expr._can_use_numexpr(op, op_str, f, f, 'evaluate') assert result != f._is_mixed_type result = expr.evaluate(op, op_str, f, f, use_numexpr=True) expected = expr.evaluate(op, op_str, f, f, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f2, f2, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #11
Source File: test_expressions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 4 votes |
def test_bool_ops_warn_on_arithmetic(self): n = 10 df = DataFrame({'a': np.random.rand(n) > 0.5, 'b': np.random.rand(n) > 0.5}) names = 'add', 'mul', 'sub' ops = '+', '*', '-' subs = {'+': '|', '*': '&', '-': '^'} sub_funcs = {'|': 'or_', '&': 'and_', '^': 'xor'} for op, name in zip(ops, names): f = getattr(operator, name) fe = getattr(operator, sub_funcs[subs[op]]) # >= 1.13.0 these are now TypeErrors if op == '-' and not _np_version_under1p13: continue with tm.use_numexpr(True, min_elements=5): with tm.assert_produces_warning(check_stacklevel=False): r = f(df, df) e = fe(df, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, df.b) e = fe(df.a, df.b) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, True) e = fe(df.a, True) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df.a) e = fe(False, df.a) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df) e = fe(False, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df, True) e = fe(df, True) tm.assert_frame_equal(r, e)
Example #12
Source File: test_expressions.py From elasticintel with GNU General Public License v3.0 | 4 votes |
def test_binary_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: for op, op_str in [('add', '+'), ('sub', '-'), ('mul', '*'), ('div', '/'), ('pow', '**')]: # numpy >= 1.11 doesn't handle integers # raised to integer powers # https://github.com/pandas-dev/pandas/issues/15363 if op == 'pow' and not _np_version_under1p11: continue if op == 'div': op = getattr(operator, 'truediv', None) else: op = getattr(operator, op, None) if op is not None: result = expr._can_use_numexpr(op, op_str, f, f, 'evaluate') assert result != f._is_mixed_type result = expr.evaluate(op, op_str, f, f, use_numexpr=True) expected = expr.evaluate(op, op_str, f, f, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f2, f2, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #13
Source File: test_expressions.py From elasticintel with GNU General Public License v3.0 | 4 votes |
def test_bool_ops_warn_on_arithmetic(self): n = 10 df = DataFrame({'a': np.random.rand(n) > 0.5, 'b': np.random.rand(n) > 0.5}) names = 'add', 'mul', 'sub' ops = '+', '*', '-' subs = {'+': '|', '*': '&', '-': '^'} sub_funcs = {'|': 'or_', '&': 'and_', '^': 'xor'} for op, name in zip(ops, names): f = getattr(operator, name) fe = getattr(operator, sub_funcs[subs[op]]) # >= 1.13.0 these are now TypeErrors if op == '-' and not _np_version_under1p13: continue with tm.use_numexpr(True, min_elements=5): with tm.assert_produces_warning(check_stacklevel=False): r = f(df, df) e = fe(df, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, df.b) e = fe(df.a, df.b) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, True) e = fe(df.a, True) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df.a) e = fe(False, df.a) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df) e = fe(False, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df, True) e = fe(df, True) tm.assert_frame_equal(r, e)
Example #14
Source File: test_expressions.py From twitter-stock-recommendation with MIT License | 4 votes |
def test_binary_ops(self): def testit(): for f, f2 in [(self.frame, self.frame2), (self.mixed, self.mixed2)]: for op, op_str in [('add', '+'), ('sub', '-'), ('mul', '*'), ('div', '/'), ('pow', '**')]: # numpy >= 1.11 doesn't handle integers # raised to integer powers # https://github.com/pandas-dev/pandas/issues/15363 if op == 'pow' and not _np_version_under1p11: continue if op == 'div': op = getattr(operator, 'truediv', None) else: op = getattr(operator, op, None) if op is not None: result = expr._can_use_numexpr(op, op_str, f, f, 'evaluate') assert result != f._is_mixed_type result = expr.evaluate(op, op_str, f, f, use_numexpr=True) expected = expr.evaluate(op, op_str, f, f, use_numexpr=False) if isinstance(result, DataFrame): tm.assert_frame_equal(result, expected) else: tm.assert_numpy_array_equal(result, expected.values) result = expr._can_use_numexpr(op, op_str, f2, f2, 'evaluate') assert not result expr.set_use_numexpr(False) testit() expr.set_use_numexpr(True) expr.set_numexpr_threads(1) testit() expr.set_numexpr_threads() testit()
Example #15
Source File: test_expressions.py From twitter-stock-recommendation with MIT License | 4 votes |
def test_bool_ops_warn_on_arithmetic(self): n = 10 df = DataFrame({'a': np.random.rand(n) > 0.5, 'b': np.random.rand(n) > 0.5}) names = 'add', 'mul', 'sub' ops = '+', '*', '-' subs = {'+': '|', '*': '&', '-': '^'} sub_funcs = {'|': 'or_', '&': 'and_', '^': 'xor'} for op, name in zip(ops, names): f = getattr(operator, name) fe = getattr(operator, sub_funcs[subs[op]]) # >= 1.13.0 these are now TypeErrors if op == '-' and not _np_version_under1p13: continue with tm.use_numexpr(True, min_elements=5): with tm.assert_produces_warning(check_stacklevel=False): r = f(df, df) e = fe(df, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, df.b) e = fe(df.a, df.b) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df.a, True) e = fe(df.a, True) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df.a) e = fe(False, df.a) tm.assert_series_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(False, df) e = fe(False, df) tm.assert_frame_equal(r, e) with tm.assert_produces_warning(check_stacklevel=False): r = f(df, True) e = fe(df, True) tm.assert_frame_equal(r, e)