Python pandas.util.testing.makeStringSeries() Examples
The following are 30
code examples of pandas.util.testing.makeStringSeries().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_stat_reductions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_skew(self): from scipy.stats import skew string_series = tm.makeStringSeries().rename('series') alt = lambda x: skew(x, bias=False) self._check_stat_op('skew', alt, string_series) # test corner cases, skew() returns NaN unless there's at least 3 # values min_N = 3 for i in range(1, min_N + 1): s = Series(np.ones(i)) df = DataFrame(np.ones((i, i))) if i < min_N: assert np.isnan(s.skew()) assert np.isnan(df.skew()).all() else: assert 0 == s.skew() assert (df.skew() == 0).all()
Example #2
Source File: test_stat_reductions.py From recruit with Apache License 2.0 | 6 votes |
def test_sem(self): string_series = tm.makeStringSeries().rename('series') datetime_series = tm.makeTimeSeries().rename('ts') alt = lambda x: np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt, string_series) result = datetime_series.sem(ddof=4) expected = np.std(datetime_series.values, ddof=4) / np.sqrt(len(datetime_series.values)) tm.assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = datetime_series.iloc[[0]] result = s.sem(ddof=1) assert pd.isna(result)
Example #3
Source File: test_stat_reductions.py From recruit with Apache License 2.0 | 6 votes |
def test_var_std(self): string_series = tm.makeStringSeries().rename('series') datetime_series = tm.makeTimeSeries().rename('ts') alt = lambda x: np.std(x, ddof=1) self._check_stat_op('std', alt, string_series) alt = lambda x: np.var(x, ddof=1) self._check_stat_op('var', alt, string_series) result = datetime_series.std(ddof=4) expected = np.std(datetime_series.values, ddof=4) tm.assert_almost_equal(result, expected) result = datetime_series.var(ddof=4) expected = np.var(datetime_series.values, ddof=4) tm.assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = datetime_series.iloc[[0]] result = s.var(ddof=1) assert pd.isna(result) result = s.std(ddof=1) assert pd.isna(result)
Example #4
Source File: test_stat_reductions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_sem(self): string_series = tm.makeStringSeries().rename('series') datetime_series = tm.makeTimeSeries().rename('ts') alt = lambda x: np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt, string_series) result = datetime_series.sem(ddof=4) expected = np.std(datetime_series.values, ddof=4) / np.sqrt(len(datetime_series.values)) tm.assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = datetime_series.iloc[[0]] result = s.sem(ddof=1) assert pd.isna(result)
Example #5
Source File: test_generic.py From vnpy_crypto with MIT License | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) tm.assert_raises_regex(TypeError, msg, p.transpose, 2, 0, 1, axes=(2, 0, 1))
Example #6
Source File: test_generic.py From vnpy_crypto with MIT License | 6 votes |
def test_take(self): indices = [1, 5, -2, 6, 3, -1] for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: out = s.take(indices) expected = Series(data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype) tm.assert_series_equal(out, expected) for df in [tm.makeTimeDataFrame()]: out = df.take(indices) expected = DataFrame(data=df.values.take(indices, axis=0), index=df.index.take(indices), columns=df.columns) tm.assert_frame_equal(out, expected) indices = [-3, 2, 0, 1] with catch_warnings(record=True): for p in [tm.makePanel()]: out = p.take(indices) expected = Panel(data=p.values.take(indices, axis=0), items=p.items.take(indices), major_axis=p.major_axis, minor_axis=p.minor_axis) tm.assert_panel_equal(out, expected)
Example #7
Source File: test_stat_reductions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_var_std(self): string_series = tm.makeStringSeries().rename('series') datetime_series = tm.makeTimeSeries().rename('ts') alt = lambda x: np.std(x, ddof=1) self._check_stat_op('std', alt, string_series) alt = lambda x: np.var(x, ddof=1) self._check_stat_op('var', alt, string_series) result = datetime_series.std(ddof=4) expected = np.std(datetime_series.values, ddof=4) tm.assert_almost_equal(result, expected) result = datetime_series.var(ddof=4) expected = np.var(datetime_series.values, ddof=4) tm.assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = datetime_series.iloc[[0]] result = s.var(ddof=1) assert pd.isna(result) result = s.std(ddof=1) assert pd.isna(result)
Example #8
Source File: test_pandas.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def setup_method(self, method): self.dirpath = tm.get_data_path() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty_series = Series([], index=[]) self.empty_frame = DataFrame({}) self.frame = _frame.copy() self.frame2 = _frame2.copy() self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy()
Example #9
Source File: test_stat_reductions.py From recruit with Apache License 2.0 | 6 votes |
def test_skew(self): from scipy.stats import skew string_series = tm.makeStringSeries().rename('series') alt = lambda x: skew(x, bias=False) self._check_stat_op('skew', alt, string_series) # test corner cases, skew() returns NaN unless there's at least 3 # values min_N = 3 for i in range(1, min_N + 1): s = Series(np.ones(i)) df = DataFrame(np.ones((i, i))) if i < min_N: assert np.isnan(s.skew()) assert np.isnan(df.skew()).all() else: assert 0 == s.skew() assert (df.skew() == 0).all()
Example #10
Source File: test_pandas.py From Computable with MIT License | 6 votes |
def setUp(self): self.dirpath = tm.get_data_path() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty_series = Series([], index=[]) self.empty_frame = DataFrame({}) self.frame = _frame.copy() self.frame2 = _frame2.copy() self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy()
Example #11
Source File: test_generic.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) tm.assert_raises_regex(TypeError, msg, p.transpose, 2, 0, 1, axes=(2, 0, 1))
Example #12
Source File: test_generic.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_take(self): indices = [1, 5, -2, 6, 3, -1] for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: out = s.take(indices) expected = Series(data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype) tm.assert_series_equal(out, expected) for df in [tm.makeTimeDataFrame()]: out = df.take(indices) expected = DataFrame(data=df.values.take(indices, axis=0), index=df.index.take(indices), columns=df.columns) tm.assert_frame_equal(out, expected) indices = [-3, 2, 0, 1] with catch_warnings(record=True): for p in [tm.makePanel()]: out = p.take(indices) expected = Panel(data=p.values.take(indices, axis=0), items=p.items.take(indices), major_axis=p.major_axis, minor_axis=p.minor_axis) tm.assert_panel_equal(out, expected)
Example #13
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_take(self): indices = [1, 5, -2, 6, 3, -1] for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: out = s.take(indices) expected = Series(data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype) tm.assert_series_equal(out, expected) for df in [tm.makeTimeDataFrame()]: out = df.take(indices) expected = DataFrame(data=df.values.take(indices, axis=0), index=df.index.take(indices), columns=df.columns) tm.assert_frame_equal(out, expected) indices = [-3, 2, 0, 1] with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: out = p.take(indices) expected = Panel(data=p.values.take(indices, axis=0), items=p.items.take(indices), major_axis=p.major_axis, minor_axis=p.minor_axis) tm.assert_panel_equal(out, expected)
Example #14
Source File: test_generic.py From recruit with Apache License 2.0 | 6 votes |
def test_take(self): indices = [1, 5, -2, 6, 3, -1] for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: out = s.take(indices) expected = Series(data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype) tm.assert_series_equal(out, expected) for df in [tm.makeTimeDataFrame()]: out = df.take(indices) expected = DataFrame(data=df.values.take(indices, axis=0), index=df.index.take(indices), columns=df.columns) tm.assert_frame_equal(out, expected) indices = [-3, 2, 0, 1] with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: out = p.take(indices) expected = Panel(data=p.values.take(indices, axis=0), items=p.items.take(indices), major_axis=p.major_axis, minor_axis=p.minor_axis) tm.assert_panel_equal(out, expected)
Example #15
Source File: test_generic.py From recruit with Apache License 2.0 | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) with pytest.raises(TypeError, match=msg): p.transpose(2, 0, 1, axes=(2, 0, 1))
Example #16
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) with pytest.raises(TypeError, match=msg): p.transpose(2, 0, 1, axes=(2, 0, 1))
Example #17
Source File: test_stat_reductions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_prod(self): string_series = tm.makeStringSeries().rename('series') self._check_stat_op('prod', np.prod, string_series)
Example #18
Source File: test_series.py From twitter-stock-recommendation with MIT License | 5 votes |
def setup_method(self): self.ts = tm.makeTimeSeries() # Was at top level in test_series self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series'
Example #19
Source File: test_series.py From coffeegrindsize with MIT License | 5 votes |
def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries'
Example #20
Source File: test_series.py From twitter-stock-recommendation with MIT License | 5 votes |
def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries'
Example #21
Source File: test_packers.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def setup_method(self, method): super(TestSeries, self).setup_method(method) self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 2 + [Timestamp('20130603', tz='CET')] * 3, 'G': [Timestamp('20130102', tz='US/Eastern')] * 5, 'H': Categorical([1, 2, 3, 4, 5]), 'I': Categorical([1, 2, 3, 4, 5], ordered=True), 'J': (np.bool_(1), 2, 3, 4, 5), } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) self.d['dt_tz_mixed'] = Series(data['F']) self.d['dt_tz'] = Series(data['G']) self.d['cat_ordered'] = Series(data['H']) self.d['cat_unordered'] = Series(data['I']) self.d['numpy_bool_mixed'] = Series(data['J'])
Example #22
Source File: test_stat_reductions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_median(self): string_series = tm.makeStringSeries().rename('series') self._check_stat_op('median', np.median, string_series) # test with integers, test failure int_ts = Series(np.ones(10, dtype=int), index=lrange(10)) tm.assert_almost_equal(np.median(int_ts), int_ts.median())
Example #23
Source File: test_stat_reductions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_mean(self): string_series = tm.makeStringSeries().rename('series') self._check_stat_op('mean', np.mean, string_series)
Example #24
Source File: test_stat_reductions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_sum(self): string_series = tm.makeStringSeries().rename('series') self._check_stat_op('sum', np.sum, string_series, check_allna=False)
Example #25
Source File: test_missing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_isna_isnull(self, isna_f): assert not isna_f(1.) assert isna_f(None) assert isna_f(np.NaN) assert float('nan') assert not isna_f(np.inf) assert not isna_f(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert isinstance(isna_f(s), Series) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isna_f(df) expected = df.apply(isna_f) tm.assert_frame_equal(result, expected) # panel with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())]: result = isna_f(p) expected = p.apply(isna_f) tm.assert_panel_equal(result, expected)
Example #26
Source File: test_missing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_notna_notnull(notna_f): assert notna_f(1.) assert not notna_f(None) assert not notna_f(np.NaN) with cf.option_context("mode.use_inf_as_na", False): assert notna_f(np.inf) assert notna_f(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notna_f(arr) assert result.all() with cf.option_context("mode.use_inf_as_na", True): assert not notna_f(np.inf) assert not notna_f(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notna_f(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_na", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(notna_f(s), Series))
Example #27
Source File: common.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def series(self): series = tm.makeStringSeries() series.name = 'series' return series
Example #28
Source File: test_operators.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_invert(self): ser = tm.makeStringSeries() ser.name = 'series' assert_series_equal(-(ser < 0), ~(ser < 0))
Example #29
Source File: test_operators.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_neg(self): ser = tm.makeStringSeries() ser.name = 'series' assert_series_equal(-ser, -1 * ser)
Example #30
Source File: test_series.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def setup_method(self): self.ts = tm.makeTimeSeries() # Was at top level in test_series self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series'