Python pandas.util.testing.makeStringSeries() Examples

The following are 30 code examples of pandas.util.testing.makeStringSeries(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pandas.util.testing , or try the search function .
Example #1
Source File: test_stat_reductions.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_skew(self):
        from scipy.stats import skew

        string_series = tm.makeStringSeries().rename('series')

        alt = lambda x: skew(x, bias=False)
        self._check_stat_op('skew', alt, string_series)

        # test corner cases, skew() returns NaN unless there's at least 3
        # values
        min_N = 3
        for i in range(1, min_N + 1):
            s = Series(np.ones(i))
            df = DataFrame(np.ones((i, i)))
            if i < min_N:
                assert np.isnan(s.skew())
                assert np.isnan(df.skew()).all()
            else:
                assert 0 == s.skew()
                assert (df.skew() == 0).all() 
Example #2
Source File: test_stat_reductions.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_sem(self):
        string_series = tm.makeStringSeries().rename('series')
        datetime_series = tm.makeTimeSeries().rename('ts')

        alt = lambda x: np.std(x, ddof=1) / np.sqrt(len(x))
        self._check_stat_op('sem', alt, string_series)

        result = datetime_series.sem(ddof=4)
        expected = np.std(datetime_series.values,
                          ddof=4) / np.sqrt(len(datetime_series.values))
        tm.assert_almost_equal(result, expected)

        # 1 - element series with ddof=1
        s = datetime_series.iloc[[0]]
        result = s.sem(ddof=1)
        assert pd.isna(result) 
Example #3
Source File: test_stat_reductions.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_var_std(self):
        string_series = tm.makeStringSeries().rename('series')
        datetime_series = tm.makeTimeSeries().rename('ts')

        alt = lambda x: np.std(x, ddof=1)
        self._check_stat_op('std', alt, string_series)

        alt = lambda x: np.var(x, ddof=1)
        self._check_stat_op('var', alt, string_series)

        result = datetime_series.std(ddof=4)
        expected = np.std(datetime_series.values, ddof=4)
        tm.assert_almost_equal(result, expected)

        result = datetime_series.var(ddof=4)
        expected = np.var(datetime_series.values, ddof=4)
        tm.assert_almost_equal(result, expected)

        # 1 - element series with ddof=1
        s = datetime_series.iloc[[0]]
        result = s.var(ddof=1)
        assert pd.isna(result)

        result = s.std(ddof=1)
        assert pd.isna(result) 
Example #4
Source File: test_stat_reductions.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_sem(self):
        string_series = tm.makeStringSeries().rename('series')
        datetime_series = tm.makeTimeSeries().rename('ts')

        alt = lambda x: np.std(x, ddof=1) / np.sqrt(len(x))
        self._check_stat_op('sem', alt, string_series)

        result = datetime_series.sem(ddof=4)
        expected = np.std(datetime_series.values,
                          ddof=4) / np.sqrt(len(datetime_series.values))
        tm.assert_almost_equal(result, expected)

        # 1 - element series with ddof=1
        s = datetime_series.iloc[[0]]
        result = s.sem(ddof=1)
        assert pd.isna(result) 
Example #5
Source File: test_generic.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_transpose(self):
        msg = (r"transpose\(\) got multiple values for "
               r"keyword argument 'axes'")
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            # calls implementation in pandas/core/base.py
            tm.assert_series_equal(s.transpose(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.transpose().transpose(), df)

        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.transpose(2, 0, 1)
                                      .transpose(1, 2, 0), p)
                tm.assert_raises_regex(TypeError, msg, p.transpose,
                                       2, 0, 1, axes=(2, 0, 1)) 
Example #6
Source File: test_generic.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_take(self):
        indices = [1, 5, -2, 6, 3, -1]
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            out = s.take(indices)
            expected = Series(data=s.values.take(indices),
                              index=s.index.take(indices), dtype=s.dtype)
            tm.assert_series_equal(out, expected)
        for df in [tm.makeTimeDataFrame()]:
            out = df.take(indices)
            expected = DataFrame(data=df.values.take(indices, axis=0),
                                 index=df.index.take(indices),
                                 columns=df.columns)
            tm.assert_frame_equal(out, expected)

        indices = [-3, 2, 0, 1]
        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                out = p.take(indices)
                expected = Panel(data=p.values.take(indices, axis=0),
                                 items=p.items.take(indices),
                                 major_axis=p.major_axis,
                                 minor_axis=p.minor_axis)
                tm.assert_panel_equal(out, expected) 
Example #7
Source File: test_stat_reductions.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_var_std(self):
        string_series = tm.makeStringSeries().rename('series')
        datetime_series = tm.makeTimeSeries().rename('ts')

        alt = lambda x: np.std(x, ddof=1)
        self._check_stat_op('std', alt, string_series)

        alt = lambda x: np.var(x, ddof=1)
        self._check_stat_op('var', alt, string_series)

        result = datetime_series.std(ddof=4)
        expected = np.std(datetime_series.values, ddof=4)
        tm.assert_almost_equal(result, expected)

        result = datetime_series.var(ddof=4)
        expected = np.var(datetime_series.values, ddof=4)
        tm.assert_almost_equal(result, expected)

        # 1 - element series with ddof=1
        s = datetime_series.iloc[[0]]
        result = s.var(ddof=1)
        assert pd.isna(result)

        result = s.std(ddof=1)
        assert pd.isna(result) 
Example #8
Source File: test_pandas.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def setup_method(self, method):
        self.dirpath = tm.get_data_path()

        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.objSeries = tm.makeObjectSeries()
        self.objSeries.name = 'objects'

        self.empty_series = Series([], index=[])
        self.empty_frame = DataFrame({})

        self.frame = _frame.copy()
        self.frame2 = _frame2.copy()
        self.intframe = _intframe.copy()
        self.tsframe = _tsframe.copy()
        self.mixed_frame = _mixed_frame.copy()
        self.categorical = _cat_frame.copy() 
Example #9
Source File: test_stat_reductions.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_skew(self):
        from scipy.stats import skew

        string_series = tm.makeStringSeries().rename('series')

        alt = lambda x: skew(x, bias=False)
        self._check_stat_op('skew', alt, string_series)

        # test corner cases, skew() returns NaN unless there's at least 3
        # values
        min_N = 3
        for i in range(1, min_N + 1):
            s = Series(np.ones(i))
            df = DataFrame(np.ones((i, i)))
            if i < min_N:
                assert np.isnan(s.skew())
                assert np.isnan(df.skew()).all()
            else:
                assert 0 == s.skew()
                assert (df.skew() == 0).all() 
Example #10
Source File: test_pandas.py    From Computable with MIT License 6 votes vote down vote up
def setUp(self):
        self.dirpath = tm.get_data_path()

        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.objSeries = tm.makeObjectSeries()
        self.objSeries.name = 'objects'

        self.empty_series = Series([], index=[])
        self.empty_frame = DataFrame({})

        self.frame = _frame.copy()
        self.frame2 = _frame2.copy()
        self.intframe = _intframe.copy()
        self.tsframe = _tsframe.copy()
        self.mixed_frame = _mixed_frame.copy() 
Example #11
Source File: test_generic.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_transpose(self):
        msg = (r"transpose\(\) got multiple values for "
               r"keyword argument 'axes'")
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            # calls implementation in pandas/core/base.py
            tm.assert_series_equal(s.transpose(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.transpose().transpose(), df)

        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.transpose(2, 0, 1)
                                      .transpose(1, 2, 0), p)
                tm.assert_raises_regex(TypeError, msg, p.transpose,
                                       2, 0, 1, axes=(2, 0, 1)) 
Example #12
Source File: test_generic.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_take(self):
        indices = [1, 5, -2, 6, 3, -1]
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            out = s.take(indices)
            expected = Series(data=s.values.take(indices),
                              index=s.index.take(indices), dtype=s.dtype)
            tm.assert_series_equal(out, expected)
        for df in [tm.makeTimeDataFrame()]:
            out = df.take(indices)
            expected = DataFrame(data=df.values.take(indices, axis=0),
                                 index=df.index.take(indices),
                                 columns=df.columns)
            tm.assert_frame_equal(out, expected)

        indices = [-3, 2, 0, 1]
        with catch_warnings(record=True):
            for p in [tm.makePanel()]:
                out = p.take(indices)
                expected = Panel(data=p.values.take(indices, axis=0),
                                 items=p.items.take(indices),
                                 major_axis=p.major_axis,
                                 minor_axis=p.minor_axis)
                tm.assert_panel_equal(out, expected) 
Example #13
Source File: test_generic.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_take(self):
        indices = [1, 5, -2, 6, 3, -1]
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            out = s.take(indices)
            expected = Series(data=s.values.take(indices),
                              index=s.index.take(indices), dtype=s.dtype)
            tm.assert_series_equal(out, expected)
        for df in [tm.makeTimeDataFrame()]:
            out = df.take(indices)
            expected = DataFrame(data=df.values.take(indices, axis=0),
                                 index=df.index.take(indices),
                                 columns=df.columns)
            tm.assert_frame_equal(out, expected)

        indices = [-3, 2, 0, 1]
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel()]:
                out = p.take(indices)
                expected = Panel(data=p.values.take(indices, axis=0),
                                 items=p.items.take(indices),
                                 major_axis=p.major_axis,
                                 minor_axis=p.minor_axis)
                tm.assert_panel_equal(out, expected) 
Example #14
Source File: test_generic.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_take(self):
        indices = [1, 5, -2, 6, 3, -1]
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            out = s.take(indices)
            expected = Series(data=s.values.take(indices),
                              index=s.index.take(indices), dtype=s.dtype)
            tm.assert_series_equal(out, expected)
        for df in [tm.makeTimeDataFrame()]:
            out = df.take(indices)
            expected = DataFrame(data=df.values.take(indices, axis=0),
                                 index=df.index.take(indices),
                                 columns=df.columns)
            tm.assert_frame_equal(out, expected)

        indices = [-3, 2, 0, 1]
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel()]:
                out = p.take(indices)
                expected = Panel(data=p.values.take(indices, axis=0),
                                 items=p.items.take(indices),
                                 major_axis=p.major_axis,
                                 minor_axis=p.minor_axis)
                tm.assert_panel_equal(out, expected) 
Example #15
Source File: test_generic.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_transpose(self):
        msg = (r"transpose\(\) got multiple values for "
               r"keyword argument 'axes'")
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            # calls implementation in pandas/core/base.py
            tm.assert_series_equal(s.transpose(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.transpose().transpose(), df)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.transpose(2, 0, 1)
                                      .transpose(1, 2, 0), p)
                with pytest.raises(TypeError, match=msg):
                    p.transpose(2, 0, 1, axes=(2, 0, 1)) 
Example #16
Source File: test_generic.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_transpose(self):
        msg = (r"transpose\(\) got multiple values for "
               r"keyword argument 'axes'")
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries()]:
            # calls implementation in pandas/core/base.py
            tm.assert_series_equal(s.transpose(), s)
        for df in [tm.makeTimeDataFrame()]:
            tm.assert_frame_equal(df.transpose().transpose(), df)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel()]:
                tm.assert_panel_equal(p.transpose(2, 0, 1)
                                      .transpose(1, 2, 0), p)
                with pytest.raises(TypeError, match=msg):
                    p.transpose(2, 0, 1, axes=(2, 0, 1)) 
Example #17
Source File: test_stat_reductions.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_prod(self):
        string_series = tm.makeStringSeries().rename('series')
        self._check_stat_op('prod', np.prod, string_series) 
Example #18
Source File: test_series.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def setup_method(self):
        self.ts = tm.makeTimeSeries()  # Was at top level in test_series
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series' 
Example #19
Source File: test_series.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def setup_method(self, method):
        TestPlotBase.setup_method(self, method)
        import matplotlib as mpl
        mpl.rcdefaults()

        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.iseries = tm.makePeriodSeries()
        self.iseries.name = 'iseries' 
Example #20
Source File: test_series.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def setup_method(self, method):
        TestPlotBase.setup_method(self, method)
        import matplotlib as mpl
        mpl.rcdefaults()

        self.ts = tm.makeTimeSeries()
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'

        self.iseries = tm.makePeriodSeries()
        self.iseries.name = 'iseries' 
Example #21
Source File: test_packers.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def setup_method(self, method):
        super(TestSeries, self).setup_method(method)

        self.d = {}

        s = tm.makeStringSeries()
        s.name = 'string'
        self.d['string'] = s

        s = tm.makeObjectSeries()
        s.name = 'object'
        self.d['object'] = s

        s = Series(iNaT, dtype='M8[ns]', index=range(5))
        self.d['date'] = s

        data = {
            'A': [0., 1., 2., 3., np.nan],
            'B': [0, 1, 0, 1, 0],
            'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'],
            'D': date_range('1/1/2009', periods=5),
            'E': [0., 1, Timestamp('20100101'), 'foo', 2.],
            'F': [Timestamp('20130102', tz='US/Eastern')] * 2 +
                 [Timestamp('20130603', tz='CET')] * 3,
            'G': [Timestamp('20130102', tz='US/Eastern')] * 5,
            'H': Categorical([1, 2, 3, 4, 5]),
            'I': Categorical([1, 2, 3, 4, 5], ordered=True),
            'J': (np.bool_(1), 2, 3, 4, 5),
        }

        self.d['float'] = Series(data['A'])
        self.d['int'] = Series(data['B'])
        self.d['mixed'] = Series(data['E'])
        self.d['dt_tz_mixed'] = Series(data['F'])
        self.d['dt_tz'] = Series(data['G'])
        self.d['cat_ordered'] = Series(data['H'])
        self.d['cat_unordered'] = Series(data['I'])
        self.d['numpy_bool_mixed'] = Series(data['J']) 
Example #22
Source File: test_stat_reductions.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_median(self):
        string_series = tm.makeStringSeries().rename('series')
        self._check_stat_op('median', np.median, string_series)

        # test with integers, test failure
        int_ts = Series(np.ones(10, dtype=int), index=lrange(10))
        tm.assert_almost_equal(np.median(int_ts), int_ts.median()) 
Example #23
Source File: test_stat_reductions.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_mean(self):
        string_series = tm.makeStringSeries().rename('series')
        self._check_stat_op('mean', np.mean, string_series) 
Example #24
Source File: test_stat_reductions.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_sum(self):
        string_series = tm.makeStringSeries().rename('series')
        self._check_stat_op('sum', np.sum, string_series, check_allna=False) 
Example #25
Source File: test_missing.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_isna_isnull(self, isna_f):
        assert not isna_f(1.)
        assert isna_f(None)
        assert isna_f(np.NaN)
        assert float('nan')
        assert not isna_f(np.inf)
        assert not isna_f(-np.inf)

        # series
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert isinstance(isna_f(s), Series)

        # frame
        for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(),
                   tm.makeMixedDataFrame()]:
            result = isna_f(df)
            expected = df.apply(isna_f)
            tm.assert_frame_equal(result, expected)

        # panel
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            for p in [tm.makePanel(), tm.makePeriodPanel(),
                      tm.add_nans(tm.makePanel())]:
                result = isna_f(p)
                expected = p.apply(isna_f)
                tm.assert_panel_equal(result, expected) 
Example #26
Source File: test_missing.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_notna_notnull(notna_f):
    assert notna_f(1.)
    assert not notna_f(None)
    assert not notna_f(np.NaN)

    with cf.option_context("mode.use_inf_as_na", False):
        assert notna_f(np.inf)
        assert notna_f(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notna_f(arr)
        assert result.all()

    with cf.option_context("mode.use_inf_as_na", True):
        assert not notna_f(np.inf)
        assert not notna_f(-np.inf)

        arr = np.array([1.5, np.inf, 3.5, -np.inf])
        result = notna_f(arr)
        assert result.sum() == 2

    with cf.option_context("mode.use_inf_as_na", False):
        for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
                  tm.makeObjectSeries(), tm.makeTimeSeries(),
                  tm.makePeriodSeries()]:
            assert (isinstance(notna_f(s), Series)) 
Example #27
Source File: common.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def series(self):
        series = tm.makeStringSeries()
        series.name = 'series'
        return series 
Example #28
Source File: test_operators.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_invert(self):
        ser = tm.makeStringSeries()
        ser.name = 'series'
        assert_series_equal(-(ser < 0), ~(ser < 0)) 
Example #29
Source File: test_operators.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_neg(self):
        ser = tm.makeStringSeries()
        ser.name = 'series'
        assert_series_equal(-ser, -1 * ser) 
Example #30
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def setup_method(self):
        self.ts = tm.makeTimeSeries()  # Was at top level in test_series
        self.ts.name = 'ts'

        self.series = tm.makeStringSeries()
        self.series.name = 'series'