Python pandas.util.testing.makeObjectSeries() Examples
The following are 30
code examples of pandas.util.testing.makeObjectSeries().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_generic.py From vnpy_crypto with MIT License | 6 votes |
def test_take(self): indices = [1, 5, -2, 6, 3, -1] for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: out = s.take(indices) expected = Series(data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype) tm.assert_series_equal(out, expected) for df in [tm.makeTimeDataFrame()]: out = df.take(indices) expected = DataFrame(data=df.values.take(indices, axis=0), index=df.index.take(indices), columns=df.columns) tm.assert_frame_equal(out, expected) indices = [-3, 2, 0, 1] with catch_warnings(record=True): for p in [tm.makePanel()]: out = p.take(indices) expected = Panel(data=p.values.take(indices, axis=0), items=p.items.take(indices), major_axis=p.major_axis, minor_axis=p.minor_axis) tm.assert_panel_equal(out, expected)
Example #2
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_take(self): indices = [1, 5, -2, 6, 3, -1] for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: out = s.take(indices) expected = Series(data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype) tm.assert_series_equal(out, expected) for df in [tm.makeTimeDataFrame()]: out = df.take(indices) expected = DataFrame(data=df.values.take(indices, axis=0), index=df.index.take(indices), columns=df.columns) tm.assert_frame_equal(out, expected) indices = [-3, 2, 0, 1] with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: out = p.take(indices) expected = Panel(data=p.values.take(indices, axis=0), items=p.items.take(indices), major_axis=p.major_axis, minor_axis=p.minor_axis) tm.assert_panel_equal(out, expected)
Example #3
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) with pytest.raises(TypeError, match=msg): p.transpose(2, 0, 1, axes=(2, 0, 1))
Example #4
Source File: test_pandas.py From Computable with MIT License | 6 votes |
def setUp(self): self.dirpath = tm.get_data_path() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty_series = Series([], index=[]) self.empty_frame = DataFrame({}) self.frame = _frame.copy() self.frame2 = _frame2.copy() self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy()
Example #5
Source File: test_generic.py From vnpy_crypto with MIT License | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) tm.assert_raises_regex(TypeError, msg, p.transpose, 2, 0, 1, axes=(2, 0, 1))
Example #6
Source File: test_pandas.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def setup_method(self, method): self.dirpath = tm.get_data_path() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty_series = Series([], index=[]) self.empty_frame = DataFrame({}) self.frame = _frame.copy() self.frame2 = _frame2.copy() self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy()
Example #7
Source File: test_generic.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) tm.assert_raises_regex(TypeError, msg, p.transpose, 2, 0, 1, axes=(2, 0, 1))
Example #8
Source File: test_generic.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_take(self): indices = [1, 5, -2, 6, 3, -1] for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: out = s.take(indices) expected = Series(data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype) tm.assert_series_equal(out, expected) for df in [tm.makeTimeDataFrame()]: out = df.take(indices) expected = DataFrame(data=df.values.take(indices, axis=0), index=df.index.take(indices), columns=df.columns) tm.assert_frame_equal(out, expected) indices = [-3, 2, 0, 1] with catch_warnings(record=True): for p in [tm.makePanel()]: out = p.take(indices) expected = Panel(data=p.values.take(indices, axis=0), items=p.items.take(indices), major_axis=p.major_axis, minor_axis=p.minor_axis) tm.assert_panel_equal(out, expected)
Example #9
Source File: test_generic.py From recruit with Apache License 2.0 | 6 votes |
def test_take(self): indices = [1, 5, -2, 6, 3, -1] for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: out = s.take(indices) expected = Series(data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype) tm.assert_series_equal(out, expected) for df in [tm.makeTimeDataFrame()]: out = df.take(indices) expected = DataFrame(data=df.values.take(indices, axis=0), index=df.index.take(indices), columns=df.columns) tm.assert_frame_equal(out, expected) indices = [-3, 2, 0, 1] with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: out = p.take(indices) expected = Panel(data=p.values.take(indices, axis=0), items=p.items.take(indices), major_axis=p.major_axis, minor_axis=p.minor_axis) tm.assert_panel_equal(out, expected)
Example #10
Source File: test_generic.py From recruit with Apache License 2.0 | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) with pytest.raises(TypeError, match=msg): p.transpose(2, 0, 1, axes=(2, 0, 1))
Example #11
Source File: test_packers.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def setup_method(self, method): super(TestSeries, self).setup_method(method) self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 2 + [Timestamp('20130603', tz='CET')] * 3, 'G': [Timestamp('20130102', tz='US/Eastern')] * 5, 'H': Categorical([1, 2, 3, 4, 5]), 'I': Categorical([1, 2, 3, 4, 5], ordered=True), } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) self.d['dt_tz_mixed'] = Series(data['F']) self.d['dt_tz'] = Series(data['G']) self.d['cat_ordered'] = Series(data['H']) self.d['cat_unordered'] = Series(data['I'])
Example #12
Source File: test_missing.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_isna_isnull(self, isna_f): assert not isna_f(1.) assert isna_f(None) assert isna_f(np.NaN) assert float('nan') assert not isna_f(np.inf) assert not isna_f(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert isinstance(isna_f(s), Series) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isna_f(df) expected = df.apply(isna_f) tm.assert_frame_equal(result, expected) # panel with catch_warnings(record=True): for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())]: result = isna_f(p) expected = p.apply(isna_f) tm.assert_panel_equal(result, expected) # panel 4d with catch_warnings(record=True): for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]: result = isna_f(p) expected = p.apply(isna_f) tm.assert_panel4d_equal(result, expected)
Example #13
Source File: common.py From twitter-stock-recommendation with MIT License | 5 votes |
def objSeries(self): objSeries = tm.makeObjectSeries() objSeries.name = 'objects' return objSeries
Example #14
Source File: test_missing.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_isna_isnull(self, isna_f): assert not isna_f(1.) assert isna_f(None) assert isna_f(np.NaN) assert float('nan') assert not isna_f(np.inf) assert not isna_f(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert isinstance(isna_f(s), Series) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isna_f(df) expected = df.apply(isna_f) tm.assert_frame_equal(result, expected) # panel with catch_warnings(record=True): for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())]: result = isna_f(p) expected = p.apply(isna_f) tm.assert_panel_equal(result, expected)
Example #15
Source File: test_missing.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_notna_notnull(notna_f): assert notna_f(1.) assert not notna_f(None) assert not notna_f(np.NaN) with cf.option_context("mode.use_inf_as_na", False): assert notna_f(np.inf) assert notna_f(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notna_f(arr) assert result.all() with cf.option_context("mode.use_inf_as_na", True): assert not notna_f(np.inf) assert not notna_f(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notna_f(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_na", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(notna_f(s), Series))
Example #16
Source File: common.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def objSeries(self): objSeries = tm.makeObjectSeries() objSeries.name = 'objects' return objSeries
Example #17
Source File: test_packers.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def setup_method(self, method): super(TestSeries, self).setup_method(method) self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 2 + [Timestamp('20130603', tz='CET')] * 3, 'G': [Timestamp('20130102', tz='US/Eastern')] * 5, 'H': Categorical([1, 2, 3, 4, 5]), 'I': Categorical([1, 2, 3, 4, 5], ordered=True), 'J': (np.bool_(1), 2, 3, 4, 5), } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) self.d['dt_tz_mixed'] = Series(data['F']) self.d['dt_tz'] = Series(data['G']) self.d['cat_ordered'] = Series(data['H']) self.d['cat_unordered'] = Series(data['I']) self.d['numpy_bool_mixed'] = Series(data['J'])
Example #18
Source File: test_pandas.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def setup(self, datapath): self.dirpath = datapath("io", "json", "data") self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty_series = Series([], index=[]) self.empty_frame = DataFrame({}) self.frame = _frame.copy() self.frame2 = _frame2.copy() self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.dirpath del self.ts del self.series del self.objSeries del self.empty_series del self.empty_frame del self.frame del self.frame2 del self.intframe del self.tsframe del self.mixed_frame
Example #19
Source File: test_missing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_isna_isnull(self, isna_f): assert not isna_f(1.) assert isna_f(None) assert isna_f(np.NaN) assert float('nan') assert not isna_f(np.inf) assert not isna_f(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert isinstance(isna_f(s), Series) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isna_f(df) expected = df.apply(isna_f) tm.assert_frame_equal(result, expected) # panel with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())]: result = isna_f(p) expected = p.apply(isna_f) tm.assert_panel_equal(result, expected)
Example #20
Source File: test_arithmetic.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_object_ser_add_invalid(self): # invalid ops obj_ser = tm.makeObjectSeries() obj_ser.name = 'objects' with pytest.raises(Exception): obj_ser + 1 with pytest.raises(Exception): obj_ser + np.array(1, dtype=np.int64) with pytest.raises(Exception): obj_ser - 1 with pytest.raises(Exception): obj_ser - np.array(1, dtype=np.int64)
Example #21
Source File: test_missing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_notna_notnull(notna_f): assert notna_f(1.) assert not notna_f(None) assert not notna_f(np.NaN) with cf.option_context("mode.use_inf_as_na", False): assert notna_f(np.inf) assert notna_f(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notna_f(arr) assert result.all() with cf.option_context("mode.use_inf_as_na", True): assert not notna_f(np.inf) assert not notna_f(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notna_f(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_na", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(notna_f(s), Series))
Example #22
Source File: common.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def objSeries(self): objSeries = tm.makeObjectSeries() objSeries.name = 'objects' return objSeries
Example #23
Source File: test_packers.py From Computable with MIT License | 5 votes |
def setUp(self): super(TestSeries, self).setUp() self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(tslib.iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E'])
Example #24
Source File: test_packers.py From vnpy_crypto with MIT License | 5 votes |
def setup_method(self, method): super(TestSeries, self).setup_method(method) self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 2 + [Timestamp('20130603', tz='CET')] * 3, 'G': [Timestamp('20130102', tz='US/Eastern')] * 5, 'H': Categorical([1, 2, 3, 4, 5]), 'I': Categorical([1, 2, 3, 4, 5], ordered=True), 'J': (np.bool_(1), 2, 3, 4, 5), } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) self.d['dt_tz_mixed'] = Series(data['F']) self.d['dt_tz'] = Series(data['G']) self.d['cat_ordered'] = Series(data['H']) self.d['cat_unordered'] = Series(data['I']) self.d['numpy_bool_mixed'] = Series(data['J'])
Example #25
Source File: test_pandas.py From vnpy_crypto with MIT License | 5 votes |
def setup(self, datapath): self.dirpath = datapath("io", "json", "data") self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty_series = Series([], index=[]) self.empty_frame = DataFrame({}) self.frame = _frame.copy() self.frame2 = _frame2.copy() self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.dirpath del self.ts del self.series del self.objSeries del self.empty_series del self.empty_frame del self.frame del self.frame2 del self.intframe del self.tsframe del self.mixed_frame
Example #26
Source File: test_missing.py From vnpy_crypto with MIT License | 5 votes |
def test_isna_isnull(self, isna_f): assert not isna_f(1.) assert isna_f(None) assert isna_f(np.NaN) assert float('nan') assert not isna_f(np.inf) assert not isna_f(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert isinstance(isna_f(s), Series) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isna_f(df) expected = df.apply(isna_f) tm.assert_frame_equal(result, expected) # panel with catch_warnings(record=True): for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())]: result = isna_f(p) expected = p.apply(isna_f) tm.assert_panel_equal(result, expected)
Example #27
Source File: test_arithmetic.py From vnpy_crypto with MIT License | 5 votes |
def test_object_ser_add_invalid(self): # invalid ops obj_ser = tm.makeObjectSeries() obj_ser.name = 'objects' with pytest.raises(Exception): obj_ser + 1 with pytest.raises(Exception): obj_ser + np.array(1, dtype=np.int64) with pytest.raises(Exception): obj_ser - 1 with pytest.raises(Exception): obj_ser - np.array(1, dtype=np.int64)
Example #28
Source File: common.py From vnpy_crypto with MIT License | 5 votes |
def objSeries(self): objSeries = tm.makeObjectSeries() objSeries.name = 'objects' return objSeries
Example #29
Source File: conftest.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def object_series(): """ Fixture for Series of dtype datetime64[ns] with Index of unique strings """ s = tm.makeObjectSeries() s.name = 'objects' return s
Example #30
Source File: test_packers.py From recruit with Apache License 2.0 | 5 votes |
def setup_method(self, method): super(TestSeries, self).setup_method(method) self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 2 + [Timestamp('20130603', tz='CET')] * 3, 'G': [Timestamp('20130102', tz='US/Eastern')] * 5, 'H': Categorical([1, 2, 3, 4, 5]), 'I': Categorical([1, 2, 3, 4, 5], ordered=True), 'J': (np.bool_(1), 2, 3, 4, 5), } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) self.d['dt_tz_mixed'] = Series(data['F']) self.d['dt_tz'] = Series(data['G']) self.d['cat_ordered'] = Series(data['H']) self.d['cat_unordered'] = Series(data['I']) self.d['numpy_bool_mixed'] = Series(data['J'])