Python pandas.util.testing.makePanel() Examples
The following are 30
code examples of pandas.util.testing.makePanel().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_groupby.py From recruit with Apache License 2.0 | 6 votes |
def test_sparse_friendly(df): sdf = df[['C', 'D']].to_sparse() panel = tm.makePanel() tm.add_nans(panel) def _check_work(gp): gp.mean() gp.agg(np.mean) dict(iter(gp)) # it works! _check_work(sdf.groupby(lambda x: x // 2)) _check_work(sdf['C'].groupby(lambda x: x // 2)) _check_work(sdf.groupby(df['A'])) # do this someday # _check_work(panel.groupby(lambda x: x.month, axis=1))
Example #2
Source File: test_panel.py From recruit with Apache License 2.0 | 6 votes |
def test_to_xarray(self): from xarray import DataArray with catch_warnings(record=True): simplefilter("ignore", FutureWarning) p = tm.makePanel() result = p.to_xarray() assert isinstance(result, DataArray) assert len(result.coords) == 3 assert_almost_equal(list(result.coords.keys()), ['items', 'major_axis', 'minor_axis']) assert len(result.dims) == 3 # idempotency assert_panel_equal(result.to_pandas(), p) # run all the tests, but wrap each in a warning catcher
Example #3
Source File: test_generic.py From recruit with Apache License 2.0 | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) with pytest.raises(TypeError, match=msg): p.transpose(2, 0, 1, axes=(2, 0, 1))
Example #4
Source File: test_reshape.py From recruit with Apache License 2.0 | 6 votes |
def test_reshaping_panel_categorical(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected)
Example #5
Source File: test_generic.py From recruit with Apache License 2.0 | 6 votes |
def test_numpy_transpose(self): msg = "the 'axes' parameter is not supported" s = tm.makeFloatSeries() tm.assert_series_equal(np.transpose(s), s) with pytest.raises(ValueError, match=msg): np.transpose(s, axes=1) df = tm.makeTimeDataFrame() tm.assert_frame_equal(np.transpose(np.transpose(df)), df) with pytest.raises(ValueError, match=msg): np.transpose(df, axes=1) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) p = tm.makePanel() tm.assert_panel_equal(np.transpose( np.transpose(p, axes=(2, 0, 1)), axes=(1, 2, 0)), p)
Example #6
Source File: test_generic.py From recruit with Apache License 2.0 | 6 votes |
def test_take_invalid_kwargs(self): indices = [-3, 2, 0, 1] s = tm.makeFloatSeries() df = tm.makeTimeDataFrame() with catch_warnings(record=True): simplefilter("ignore", FutureWarning) p = tm.makePanel() for obj in (s, df, p): msg = r"take\(\) got an unexpected keyword argument 'foo'" with pytest.raises(TypeError, match=msg): obj.take(indices, foo=2) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): obj.take(indices, out=indices) msg = "the 'mode' parameter is not supported" with pytest.raises(ValueError, match=msg): obj.take(indices, mode='clip')
Example #7
Source File: test_groupby.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_sparse_friendly(df): sdf = df[['C', 'D']].to_sparse() panel = tm.makePanel() tm.add_nans(panel) def _check_work(gp): gp.mean() gp.agg(np.mean) dict(iter(gp)) # it works! _check_work(sdf.groupby(lambda x: x // 2)) _check_work(sdf['C'].groupby(lambda x: x // 2)) _check_work(sdf.groupby(df['A'])) # do this someday # _check_work(panel.groupby(lambda x: x.month, axis=1))
Example #8
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_take_invalid_kwargs(self): indices = [-3, 2, 0, 1] s = tm.makeFloatSeries() df = tm.makeTimeDataFrame() with catch_warnings(record=True): simplefilter("ignore", FutureWarning) p = tm.makePanel() for obj in (s, df, p): msg = r"take\(\) got an unexpected keyword argument 'foo'" with pytest.raises(TypeError, match=msg): obj.take(indices, foo=2) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): obj.take(indices, out=indices) msg = "the 'mode' parameter is not supported" with pytest.raises(ValueError, match=msg): obj.take(indices, mode='clip')
Example #9
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_numpy_transpose(self): msg = "the 'axes' parameter is not supported" s = tm.makeFloatSeries() tm.assert_series_equal(np.transpose(s), s) with pytest.raises(ValueError, match=msg): np.transpose(s, axes=1) df = tm.makeTimeDataFrame() tm.assert_frame_equal(np.transpose(np.transpose(df)), df) with pytest.raises(ValueError, match=msg): np.transpose(df, axes=1) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) p = tm.makePanel() tm.assert_panel_equal(np.transpose( np.transpose(p, axes=(2, 0, 1)), axes=(1, 2, 0)), p)
Example #10
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): simplefilter("ignore", FutureWarning) for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) with pytest.raises(TypeError, match=msg): p.transpose(2, 0, 1, axes=(2, 0, 1))
Example #11
Source File: test_panel.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_to_xarray(self): from xarray import DataArray with catch_warnings(record=True): simplefilter("ignore", FutureWarning) p = tm.makePanel() result = p.to_xarray() assert isinstance(result, DataArray) assert len(result.coords) == 3 assert_almost_equal(list(result.coords.keys()), ['items', 'major_axis', 'minor_axis']) assert len(result.dims) == 3 # idempotency assert_panel_equal(result.to_pandas(), p) # run all the tests, but wrap each in a warning catcher
Example #12
Source File: test_groupby.py From vnpy_crypto with MIT License | 6 votes |
def test_sparse_friendly(df): sdf = df[['C', 'D']].to_sparse() with catch_warnings(record=True): panel = tm.makePanel() tm.add_nans(panel) def _check_work(gp): gp.mean() gp.agg(np.mean) dict(iter(gp)) # it works! _check_work(sdf.groupby(lambda x: x // 2)) _check_work(sdf['C'].groupby(lambda x: x // 2)) _check_work(sdf.groupby(df['A'])) # do this someday # _check_work(panel.groupby(lambda x: x.month, axis=1))
Example #13
Source File: test_reshape.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_reshaping_panel_categorical(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected)
Example #14
Source File: test_reshape.py From vnpy_crypto with MIT License | 6 votes |
def test_reshaping_panel_categorical(self): with catch_warnings(record=True): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected)
Example #15
Source File: test_pytables.py From Computable with MIT License | 6 votes |
def test_legacy_table_write(self): raise nose.SkipTest("skipping for now") store = HDFStore(tm.get_data_path('legacy_hdf/legacy_table_%s.h5' % pandas.__version__), 'a') df = tm.makeDataFrame() wp = tm.makePanel() index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['foo', 'bar']) df = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) store.append('mi', df) df = DataFrame(dict(A = 'foo', B = 'bar'),index=lrange(10)) store.append('df', df, data_columns = ['B'], min_itemsize={'A' : 200 }) store.append('wp', wp) store.close()
Example #16
Source File: test_panel.py From vnpy_crypto with MIT License | 6 votes |
def test_to_xarray(self): from xarray import DataArray with catch_warnings(record=True): p = tm.makePanel() result = p.to_xarray() assert isinstance(result, DataArray) assert len(result.coords) == 3 assert_almost_equal(list(result.coords.keys()), ['items', 'major_axis', 'minor_axis']) assert len(result.dims) == 3 # idempotency assert_panel_equal(result.to_pandas(), p) # run all the tests, but wrap each in a warning catcher
Example #17
Source File: test_generic.py From vnpy_crypto with MIT License | 6 votes |
def test_take_invalid_kwargs(self): indices = [-3, 2, 0, 1] s = tm.makeFloatSeries() df = tm.makeTimeDataFrame() with catch_warnings(record=True): p = tm.makePanel() for obj in (s, df, p): msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, obj.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, obj.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, obj.take, indices, mode='clip')
Example #18
Source File: test_generic.py From vnpy_crypto with MIT License | 6 votes |
def test_transpose(self): msg = (r"transpose\(\) got multiple values for " r"keyword argument 'axes'") for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]: # calls implementation in pandas/core/base.py tm.assert_series_equal(s.transpose(), s) for df in [tm.makeTimeDataFrame()]: tm.assert_frame_equal(df.transpose().transpose(), df) with catch_warnings(record=True): for p in [tm.makePanel()]: tm.assert_panel_equal(p.transpose(2, 0, 1) .transpose(1, 2, 0), p) tm.assert_raises_regex(TypeError, msg, p.transpose, 2, 0, 1, axes=(2, 0, 1))
Example #19
Source File: test_generic.py From vnpy_crypto with MIT License | 6 votes |
def test_numpy_transpose(self): msg = "the 'axes' parameter is not supported" s = tm.makeFloatSeries() tm.assert_series_equal( np.transpose(s), s) tm.assert_raises_regex(ValueError, msg, np.transpose, s, axes=1) df = tm.makeTimeDataFrame() tm.assert_frame_equal(np.transpose( np.transpose(df)), df) tm.assert_raises_regex(ValueError, msg, np.transpose, df, axes=1) with catch_warnings(record=True): p = tm.makePanel() tm.assert_panel_equal(np.transpose( np.transpose(p, axes=(2, 0, 1)), axes=(1, 2, 0)), p)
Example #20
Source File: test_pytables.py From Computable with MIT License | 5 votes |
def test_conv_read_write(self): try: def roundtrip(key, obj,**kwargs): obj.to_hdf(self.path, key,**kwargs) return read_hdf(self.path, key) o = tm.makeTimeSeries() assert_series_equal(o, roundtrip('series',o)) o = tm.makeStringSeries() assert_series_equal(o, roundtrip('string_series',o)) o = tm.makeDataFrame() assert_frame_equal(o, roundtrip('frame',o)) o = tm.makePanel() assert_panel_equal(o, roundtrip('panel',o)) # table df = DataFrame(dict(A=lrange(5), B=lrange(5))) df.to_hdf(self.path,'table',append=True) result = read_hdf(self.path, 'table', where = ['index>2']) assert_frame_equal(df[df.index>2],result) finally: safe_remove(self.path)
Example #21
Source File: test_pytables.py From Computable with MIT License | 5 votes |
def test_wide_table(self): wp = tm.makePanel() self._check_roundtrip_table(wp, assert_panel_equal)
Example #22
Source File: test_concat.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_panel_concat_other_axes(self): panel = tm.makePanel() p1 = panel.iloc[:, :5, :] p2 = panel.iloc[:, 5:, :] result = concat([p1, p2], axis=1) tm.assert_panel_equal(result, panel) p1 = panel.iloc[:, :, :2] p2 = panel.iloc[:, :, 2:] result = concat([p1, p2], axis=2) tm.assert_panel_equal(result, panel) # if things are a bit misbehaved p1 = panel.iloc[:2, :, :2] p2 = panel.iloc[:, :, 2:] p1['ItemC'] = 'baz' result = concat([p1, p2], axis=2) expected = panel.copy() expected['ItemC'] = expected['ItemC'].astype('O') expected.loc['ItemC', :, :2] = 'baz' tm.assert_panel_equal(result, expected)
Example #23
Source File: test_pytables.py From Computable with MIT License | 5 votes |
def test_keys(self): with ensure_clean_store(self.path) as store: store['a'] = tm.makeTimeSeries() store['b'] = tm.makeStringSeries() store['c'] = tm.makeDataFrame() store['d'] = tm.makePanel() store['foo/bar'] = tm.makePanel() self.assertEquals(len(store), 5) self.assert_(set( store.keys()) == set(['/a', '/b', '/c', '/d', '/foo/bar']))
Example #24
Source File: test_pytables.py From Computable with MIT License | 5 votes |
def test_invalid_terms(self): with ensure_clean_store(self.path) as store: df = tm.makeTimeDataFrame() df['string'] = 'foo' df.ix[0:4,'string'] = 'bar' wp = tm.makePanel() p4d = tm.makePanel4D() store.put('df', df, format='table') store.put('wp', wp, format='table') store.put('p4d', p4d, format='table') # some invalid terms self.assertRaises(ValueError, store.select, 'wp', "minor=['A', 'B']") self.assertRaises(ValueError, store.select, 'wp', ["index=['20121114']"]) self.assertRaises(ValueError, store.select, 'wp', ["index=['20121114', '20121114']"]) self.assertRaises(TypeError, Term) # more invalid self.assertRaises(ValueError, store.select, 'df','df.index[3]') self.assertRaises(SyntaxError, store.select, 'df','index>') self.assertRaises(ValueError, store.select, 'wp', "major_axis<'20000108' & minor_axis['A', 'B']") # from the docs with ensure_clean_path(self.path) as path: dfq = DataFrame(np.random.randn(10,4),columns=list('ABCD'),index=date_range('20130101',periods=10)) dfq.to_hdf(path,'dfq',format='table',data_columns=True) # check ok read_hdf(path,'dfq',where="index>Timestamp('20130104') & columns=['A', 'B']") read_hdf(path,'dfq',where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(self.path) as path: dfq = DataFrame(np.random.randn(10,4),columns=list('ABCD'),index=date_range('20130101',periods=10)) dfq.to_hdf(path,'dfq',format='table') self.assertRaises(ValueError, read_hdf, path,'dfq',where="A>0 or C>0")
Example #25
Source File: test_pytables.py From Computable with MIT License | 5 votes |
def test_wide_table_dups(self): wp = tm.makePanel() with ensure_clean_store(self.path) as store: store.put('panel', wp, format='table') store.put('panel', wp, format='table', append=True) with tm.assert_produces_warning(expected_warning=DuplicateWarning): recons = store['panel'] assert_panel_equal(recons, wp)
Example #26
Source File: test_merge.py From Computable with MIT License | 5 votes |
def test_panel_concat_other_axes(self): panel = tm.makePanel() p1 = panel.ix[:, :5, :] p2 = panel.ix[:, 5:, :] result = concat([p1, p2], axis=1) tm.assert_panel_equal(result, panel) p1 = panel.ix[:, :, :2] p2 = panel.ix[:, :, 2:] result = concat([p1, p2], axis=2) tm.assert_panel_equal(result, panel) # if things are a bit misbehaved p1 = panel.ix[:2, :, :2] p2 = panel.ix[:, :, 2:] p1['ItemC'] = 'baz' result = concat([p1, p2], axis=2) expected = panel.copy() expected['ItemC'] = expected['ItemC'].astype('O') expected.ix['ItemC', :, :2] = 'baz' tm.assert_panel_equal(result, expected)
Example #27
Source File: test_merge.py From Computable with MIT License | 5 votes |
def test_panel_join_many(self): tm.K = 10 panel = tm.makePanel() tm.K = 4 panels = [panel.ix[:2], panel.ix[2:6], panel.ix[6:]] joined = panels[0].join(panels[1:]) tm.assert_panel_equal(joined, panel) panels = [panel.ix[:2, :-5], panel.ix[2:6, 2:], panel.ix[6:, 5:-7]] data_dict = {} for p in panels: data_dict.update(compat.iteritems(p)) joined = panels[0].join(panels[1:], how='inner') expected = Panel.from_dict(data_dict, intersect=True) tm.assert_panel_equal(joined, expected) joined = panels[0].join(panels[1:], how='outer') expected = Panel.from_dict(data_dict, intersect=False) tm.assert_panel_equal(joined, expected) # edge cases self.assertRaises(ValueError, panels[0].join, panels[1:], how='outer', lsuffix='foo', rsuffix='bar') self.assertRaises(ValueError, panels[0].join, panels[1:], how='right')
Example #28
Source File: test_merge.py From Computable with MIT License | 5 votes |
def test_panel_join_overlap(self): panel = tm.makePanel() tm.add_nans(panel) p1 = panel.ix[['ItemA', 'ItemB', 'ItemC']] p2 = panel.ix[['ItemB', 'ItemC']] joined = p1.join(p2, lsuffix='_p1', rsuffix='_p2') p1_suf = p1.ix[['ItemB', 'ItemC']].add_suffix('_p1') p2_suf = p2.ix[['ItemB', 'ItemC']].add_suffix('_p2') no_overlap = panel.ix[['ItemA']] expected = p1_suf.join(p2_suf).join(no_overlap) tm.assert_panel_equal(joined, expected)
Example #29
Source File: test_merge.py From Computable with MIT License | 5 votes |
def test_panel_join(self): panel = tm.makePanel() tm.add_nans(panel) p1 = panel.ix[:2, :10, :3] p2 = panel.ix[2:, 5:, 2:] # left join result = p1.join(p2) expected = p1.copy() expected['ItemC'] = p2['ItemC'] tm.assert_panel_equal(result, expected) # right join result = p1.join(p2, how='right') expected = p2.copy() expected['ItemA'] = p1['ItemA'] expected['ItemB'] = p1['ItemB'] expected = expected.reindex(items=['ItemA', 'ItemB', 'ItemC']) tm.assert_panel_equal(result, expected) # inner join result = p1.join(p2, how='inner') expected = panel.ix[:, 5:10, 2:3] tm.assert_panel_equal(result, expected) # outer join result = p1.join(p2, how='outer') expected = p1.reindex(major=panel.major_axis, minor=panel.minor_axis) expected = expected.join(p2.reindex(major=panel.major_axis, minor=panel.minor_axis)) tm.assert_panel_equal(result, expected)
Example #30
Source File: test_pytables.py From Computable with MIT License | 5 votes |
def test_wide(self): wp = tm.makePanel() self._check_roundtrip(wp, assert_panel_equal)