Python pandas.util.testing.assert_dict_equal() Examples
The following are 30
code examples of pandas.util.testing.assert_dict_equal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_categorical.py From vnpy_crypto with MIT License | 6 votes |
def test_observed_groups(observed): # gh-20583 # test that we have the appropriate groups cat = pd.Categorical(['a', 'c', 'a'], categories=['a', 'b', 'c']) df = pd.DataFrame({'cat': cat, 'vals': [1, 2, 3]}) g = df.groupby('cat', observed=observed) result = g.groups if observed: expected = {'a': Index([0, 2], dtype='int64'), 'c': Index([1], dtype='int64')} else: expected = {'a': Index([0, 2], dtype='int64'), 'b': Index([], dtype='int64'), 'c': Index([1], dtype='int64')} tm.assert_dict_equal(result, expected)
Example #2
Source File: test_grouping.py From recruit with Apache License 2.0 | 6 votes |
def test_groupby_multiindex_tuple(self): # GH 17979 df = pd.DataFrame([[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]], columns=pd.MultiIndex.from_arrays( [['a', 'b', 'b', 'c'], [1, 1, 2, 2]])) expected = df.groupby([('b', 1)]).groups result = df.groupby(('b', 1)).groups tm.assert_dict_equal(expected, result) df2 = pd.DataFrame(df.values, columns=pd.MultiIndex.from_arrays( [['a', 'b', 'b', 'c'], ['d', 'd', 'e', 'e']])) expected = df2.groupby([('b', 'd')]).groups result = df.groupby(('b', 1)).groups tm.assert_dict_equal(expected, result) df3 = pd.DataFrame(df.values, columns=[('a', 'd'), ('b', 'd'), ('b', 'e'), 'c']) expected = df3.groupby([('b', 'd')]).groups result = df.groupby(('b', 1)).groups tm.assert_dict_equal(expected, result)
Example #3
Source File: test_grouping.py From recruit with Apache License 2.0 | 6 votes |
def test_multiindex_columns_empty_level(self): lst = [['count', 'values'], ['to filter', '']] midx = MultiIndex.from_tuples(lst) df = DataFrame([[long(1), 'A']], columns=midx) grouped = df.groupby('to filter').groups assert grouped['A'] == [0] grouped = df.groupby([('to filter', '')]).groups assert grouped['A'] == [0] df = DataFrame([[long(1), 'A'], [long(2), 'B']], columns=midx) expected = df.groupby('to filter').groups result = df.groupby([('to filter', '')]).groups assert result == expected df = DataFrame([[long(1), 'A'], [long(2), 'A']], columns=midx) expected = df.groupby('to filter').groups result = df.groupby([('to filter', '')]).groups tm.assert_dict_equal(result, expected)
Example #4
Source File: test_categorical.py From recruit with Apache License 2.0 | 6 votes |
def test_observed_groups(observed): # gh-20583 # test that we have the appropriate groups cat = pd.Categorical(['a', 'c', 'a'], categories=['a', 'b', 'c']) df = pd.DataFrame({'cat': cat, 'vals': [1, 2, 3]}) g = df.groupby('cat', observed=observed) result = g.groups if observed: expected = {'a': Index([0, 2], dtype='int64'), 'c': Index([1], dtype='int64')} else: expected = {'a': Index([0, 2], dtype='int64'), 'b': Index([], dtype='int64'), 'c': Index([1], dtype='int64')} tm.assert_dict_equal(result, expected)
Example #5
Source File: test_grouping.py From recruit with Apache License 2.0 | 6 votes |
def test_list_grouper_with_nat(self): # GH 14715 df = pd.DataFrame({'date': pd.date_range('1/1/2011', periods=365, freq='D')}) df.iloc[-1] = pd.NaT grouper = pd.Grouper(key='date', freq='AS') # Grouper in a list grouping result = df.groupby([grouper]) expected = {pd.Timestamp('2011-01-01'): pd.Index(list(range(364)))} tm.assert_dict_equal(result.groups, expected) # Test case without a list result = df.groupby(grouper) expected = {pd.Timestamp('2011-01-01'): 365} tm.assert_dict_equal(result.groups, expected) # get_group # --------------------------------
Example #6
Source File: test_numeric.py From recruit with Apache License 2.0 | 6 votes |
def test_index_groupby(self): int_idx = Index(range(6)) float_idx = Index(np.arange(0, 0.6, 0.1)) obj_idx = Index('A B C D E F'.split()) dt_idx = pd.date_range('2013-01-01', freq='M', periods=6) for idx in [int_idx, float_idx, obj_idx, dt_idx]: to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1]) tm.assert_dict_equal(idx.groupby(to_groupby), {1.0: idx[[0, 5]], 2.0: idx[[1, 4]]}) to_groupby = Index([datetime(2011, 11, 1), datetime(2011, 12, 1), pd.NaT, pd.NaT, datetime(2011, 12, 1), datetime(2011, 11, 1)], tz='UTC').values ex_keys = [Timestamp('2011-11-01'), Timestamp('2011-12-01')] expected = {ex_keys[0]: idx[[0, 5]], ex_keys[1]: idx[[1, 4]]} tm.assert_dict_equal(idx.groupby(to_groupby), expected)
Example #7
Source File: test_numeric.py From vnpy_crypto with MIT License | 6 votes |
def test_index_groupby(self): int_idx = Index(range(6)) float_idx = Index(np.arange(0, 0.6, 0.1)) obj_idx = Index('A B C D E F'.split()) dt_idx = pd.date_range('2013-01-01', freq='M', periods=6) for idx in [int_idx, float_idx, obj_idx, dt_idx]: to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1]) tm.assert_dict_equal(idx.groupby(to_groupby), {1.0: idx[[0, 5]], 2.0: idx[[1, 4]]}) to_groupby = Index([datetime(2011, 11, 1), datetime(2011, 12, 1), pd.NaT, pd.NaT, datetime(2011, 12, 1), datetime(2011, 11, 1)], tz='UTC').values ex_keys = [Timestamp('2011-11-01'), Timestamp('2011-12-01')] expected = {ex_keys[0]: idx[[0, 5]], ex_keys[1]: idx[[1, 4]]} tm.assert_dict_equal(idx.groupby(to_groupby), expected)
Example #8
Source File: test_grouping.py From vnpy_crypto with MIT License | 6 votes |
def test_multiindex_columns_empty_level(self): lst = [['count', 'values'], ['to filter', '']] midx = MultiIndex.from_tuples(lst) df = DataFrame([[long(1), 'A']], columns=midx) grouped = df.groupby('to filter').groups assert grouped['A'] == [0] grouped = df.groupby([('to filter', '')]).groups assert grouped['A'] == [0] df = DataFrame([[long(1), 'A'], [long(2), 'B']], columns=midx) expected = df.groupby('to filter').groups result = df.groupby([('to filter', '')]).groups assert result == expected df = DataFrame([[long(1), 'A'], [long(2), 'A']], columns=midx) expected = df.groupby('to filter').groups result = df.groupby([('to filter', '')]).groups tm.assert_dict_equal(result, expected)
Example #9
Source File: test_grouping.py From vnpy_crypto with MIT License | 6 votes |
def test_groupby_multiindex_tuple(self): # GH 17979 df = pd.DataFrame([[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]], columns=pd.MultiIndex.from_arrays( [['a', 'b', 'b', 'c'], [1, 1, 2, 2]])) expected = df.groupby([('b', 1)]).groups result = df.groupby(('b', 1)).groups tm.assert_dict_equal(expected, result) df2 = pd.DataFrame(df.values, columns=pd.MultiIndex.from_arrays( [['a', 'b', 'b', 'c'], ['d', 'd', 'e', 'e']])) expected = df2.groupby([('b', 'd')]).groups result = df.groupby(('b', 1)).groups tm.assert_dict_equal(expected, result) df3 = pd.DataFrame(df.values, columns=[('a', 'd'), ('b', 'd'), ('b', 'e'), 'c']) expected = df3.groupby([('b', 'd')]).groups result = df.groupby(('b', 1)).groups tm.assert_dict_equal(expected, result)
Example #10
Source File: test_numeric.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_index_groupby(self): int_idx = Index(range(6)) float_idx = Index(np.arange(0, 0.6, 0.1)) obj_idx = Index('A B C D E F'.split()) dt_idx = pd.date_range('2013-01-01', freq='M', periods=6) for idx in [int_idx, float_idx, obj_idx, dt_idx]: to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1]) tm.assert_dict_equal(idx.groupby(to_groupby), {1.0: idx[[0, 5]], 2.0: idx[[1, 4]]}) to_groupby = Index([datetime(2011, 11, 1), datetime(2011, 12, 1), pd.NaT, pd.NaT, datetime(2011, 12, 1), datetime(2011, 11, 1)], tz='UTC').values ex_keys = [Timestamp('2011-11-01'), Timestamp('2011-12-01')] expected = {ex_keys[0]: idx[[0, 5]], ex_keys[1]: idx[[1, 4]]} tm.assert_dict_equal(idx.groupby(to_groupby), expected)
Example #11
Source File: test_categorical.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_observed_groups(observed): # gh-20583 # test that we have the appropriate groups cat = pd.Categorical(['a', 'c', 'a'], categories=['a', 'b', 'c']) df = pd.DataFrame({'cat': cat, 'vals': [1, 2, 3]}) g = df.groupby('cat', observed=observed) result = g.groups if observed: expected = {'a': Index([0, 2], dtype='int64'), 'c': Index([1], dtype='int64')} else: expected = {'a': Index([0, 2], dtype='int64'), 'b': Index([], dtype='int64'), 'c': Index([1], dtype='int64')} tm.assert_dict_equal(result, expected)
Example #12
Source File: test_grouping.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_multiindex_columns_empty_level(self): lst = [['count', 'values'], ['to filter', '']] midx = MultiIndex.from_tuples(lst) df = DataFrame([[long(1), 'A']], columns=midx) grouped = df.groupby('to filter').groups assert grouped['A'] == [0] grouped = df.groupby([('to filter', '')]).groups assert grouped['A'] == [0] df = DataFrame([[long(1), 'A'], [long(2), 'B']], columns=midx) expected = df.groupby('to filter').groups result = df.groupby([('to filter', '')]).groups assert result == expected df = DataFrame([[long(1), 'A'], [long(2), 'A']], columns=midx) expected = df.groupby('to filter').groups result = df.groupby([('to filter', '')]).groups tm.assert_dict_equal(result, expected)
Example #13
Source File: test_grouping.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_groupby_multiindex_tuple(self): # GH 17979 df = pd.DataFrame([[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]], columns=pd.MultiIndex.from_arrays( [['a', 'b', 'b', 'c'], [1, 1, 2, 2]])) expected = df.groupby([('b', 1)]).groups result = df.groupby(('b', 1)).groups tm.assert_dict_equal(expected, result) df2 = pd.DataFrame(df.values, columns=pd.MultiIndex.from_arrays( [['a', 'b', 'b', 'c'], ['d', 'd', 'e', 'e']])) expected = df2.groupby([('b', 'd')]).groups result = df.groupby(('b', 1)).groups tm.assert_dict_equal(expected, result) df3 = pd.DataFrame(df.values, columns=[('a', 'd'), ('b', 'd'), ('b', 'e'), 'c']) expected = df3.groupby([('b', 'd')]).groups result = df.groupby(('b', 1)).groups tm.assert_dict_equal(expected, result)
Example #14
Source File: test_grouping.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_list_grouper_with_nat(self): # GH 14715 df = pd.DataFrame({'date': pd.date_range('1/1/2011', periods=365, freq='D')}) df.iloc[-1] = pd.NaT grouper = pd.Grouper(key='date', freq='AS') # Grouper in a list grouping result = df.groupby([grouper]) expected = {pd.Timestamp('2011-01-01'): pd.Index(list(range(364)))} tm.assert_dict_equal(result.groups, expected) # Test case without a list result = df.groupby(grouper) expected = {pd.Timestamp('2011-01-01'): 365} tm.assert_dict_equal(result.groups, expected) # get_group # --------------------------------
Example #15
Source File: test_numeric.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_index_groupby(self): int_idx = Index(range(6)) float_idx = Index(np.arange(0, 0.6, 0.1)) obj_idx = Index('A B C D E F'.split()) dt_idx = pd.date_range('2013-01-01', freq='M', periods=6) for idx in [int_idx, float_idx, obj_idx, dt_idx]: to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1]) tm.assert_dict_equal(idx.groupby(to_groupby), {1.0: idx[[0, 5]], 2.0: idx[[1, 4]]}) to_groupby = Index([datetime(2011, 11, 1), datetime(2011, 12, 1), pd.NaT, pd.NaT, datetime(2011, 12, 1), datetime(2011, 11, 1)], tz='UTC').values ex_keys = [Timestamp('2011-11-01'), Timestamp('2011-12-01')] expected = {ex_keys[0]: idx[[0, 5]], ex_keys[1]: idx[[1, 4]]} tm.assert_dict_equal(idx.groupby(to_groupby), expected)
Example #16
Source File: test_numeric.py From coffeegrindsize with MIT License | 6 votes |
def test_index_groupby(self): int_idx = Index(range(6)) float_idx = Index(np.arange(0, 0.6, 0.1)) obj_idx = Index('A B C D E F'.split()) dt_idx = pd.date_range('2013-01-01', freq='M', periods=6) for idx in [int_idx, float_idx, obj_idx, dt_idx]: to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1]) tm.assert_dict_equal(idx.groupby(to_groupby), {1.0: idx[[0, 5]], 2.0: idx[[1, 4]]}) to_groupby = Index([datetime(2011, 11, 1), datetime(2011, 12, 1), pd.NaT, pd.NaT, datetime(2011, 12, 1), datetime(2011, 11, 1)], tz='UTC').values ex_keys = [Timestamp('2011-11-01'), Timestamp('2011-12-01')] expected = {ex_keys[0]: idx[[0, 5]], ex_keys[1]: idx[[1, 4]]} tm.assert_dict_equal(idx.groupby(to_groupby), expected)
Example #17
Source File: test_numeric.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_index_groupby(self): int_idx = Index(range(6)) float_idx = Index(np.arange(0, 0.6, 0.1)) obj_idx = Index('A B C D E F'.split()) dt_idx = pd.date_range('2013-01-01', freq='M', periods=6) for idx in [int_idx, float_idx, obj_idx, dt_idx]: to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1]) tm.assert_dict_equal(idx.groupby(to_groupby), {1.0: idx[[0, 5]], 2.0: idx[[1, 4]]}) to_groupby = Index([datetime(2011, 11, 1), datetime(2011, 12, 1), pd.NaT, pd.NaT, datetime(2011, 12, 1), datetime(2011, 11, 1)], tz='UTC').values ex_keys = [Timestamp('2011-11-01'), Timestamp('2011-12-01')] expected = {ex_keys[0]: idx[[0, 5]], ex_keys[1]: idx[[1, 4]]} tm.assert_dict_equal(idx.groupby(to_groupby), expected)
Example #18
Source File: test_categorical.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_observed_groups(observed): # gh-20583 # test that we have the appropriate groups cat = pd.Categorical(['a', 'c', 'a'], categories=['a', 'b', 'c']) df = pd.DataFrame({'cat': cat, 'vals': [1, 2, 3]}) g = df.groupby('cat', observed=observed) result = g.groups if observed: expected = {'a': Index([0, 2], dtype='int64'), 'c': Index([1], dtype='int64')} else: expected = {'a': Index([0, 2], dtype='int64'), 'b': Index([], dtype='int64'), 'c': Index([1], dtype='int64')} tm.assert_dict_equal(result, expected)
Example #19
Source File: test_events.py From outrigger with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test__mutually_exclusive_exon(self, splice_graph, exon1_i, exon1_name, mutually_exclusive_events): test = splice_graph._mutually_exclusive_exon(exon1_i, exon1_name) true = mutually_exclusive_events pdt.assert_dict_equal(test, true)
Example #20
Source File: test_adjacencies.py From outrigger with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test__junctions_genome_adjacent_to_exon(self, adjacencies, snap25_exon, adjacent_in_genome): true = adjacent_in_genome test = adjacencies._junctions_genome_adjacent_to_exon(snap25_exon) pdt.assert_dict_equal(test, true)
Example #21
Source File: test_packers.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_dict_numpy_complex(self): x = {'foo': np.complex128(1.0 + 1.0j), 'bar': np.complex128(2.0 + 2.0j)} x_rec = self.encode_decode(x) tm.assert_dict_equal(x, x_rec) for key in x: tm.assert_class_equal(x[key], x_rec[key], obj="numpy complex128")
Example #22
Source File: test_packers.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_dict_complex(self): x = {'foo': 1.0 + 1.0j, 'bar': 2.0 + 2.0j} x_rec = self.encode_decode(x) tm.assert_dict_equal(x, x_rec) for key in x: tm.assert_class_equal(x[key], x_rec[key], obj="complex value")
Example #23
Source File: test_na_values.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_na_values_dict_aliasing(all_parsers): parser = all_parsers na_values = {"a": 2, "b": 1} na_values_copy = na_values.copy() names = ["a", "b"] data = "1,2\n2,1" expected = DataFrame([[1.0, 2.0], [np.nan, np.nan]], columns=names) result = parser.read_csv(StringIO(data), names=names, na_values=na_values) tm.assert_frame_equal(result, expected) tm.assert_dict_equal(na_values, na_values_copy)
Example #24
Source File: test_events.py From outrigger with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test__skipped_exon(self, splice_graph, exon1_i, exon1_name, skipped_exon_events): test = splice_graph._skipped_exon(exon1_i, exon1_name) true = skipped_exon_events pdt.assert_dict_equal(test, true)
Example #25
Source File: test_bam.py From outrigger with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test__report_read_positions(bamfile): from outrigger.io.bam import _report_read_positions bam = pysam.AlignmentFile(bamfile, 'rb') test = collections.Counter() for read in bam: _report_read_positions(read, test) break bam.close() true = {('chr2', 136713559, 136713559, '+'): 1} pdt.assert_dict_equal(test, true)
Example #26
Source File: test_multi.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_groupby(self): groups = self.index.groupby(np.array([1, 1, 1, 2, 2, 2])) labels = self.index.get_values().tolist() exp = {1: labels[:3], 2: labels[3:]} tm.assert_dict_equal(groups, exp) # GH5620 groups = self.index.groupby(self.index) exp = dict((key, [key]) for key in self.index) tm.assert_dict_equal(groups, exp)
Example #27
Source File: test_base.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_groupby(self): idx = Index(range(5)) groups = idx.groupby(np.array([1, 1, 2, 2, 2])) exp = {1: pd.Index([0, 1]), 2: pd.Index([2, 3, 4])} tm.assert_dict_equal(groups, exp)
Example #28
Source File: test_eval.py From recruit with Apache License 2.0 | 5 votes |
def test_query_inplace(self): # see gh-11149 df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) expected = df.copy() expected = expected[expected['a'] == 2] df.query('a == 2', inplace=True) assert_frame_equal(expected, df) df = {} expected = {"a": 3} self.eval("a = 1 + 2", target=df, inplace=True) tm.assert_dict_equal(df, expected)
Example #29
Source File: test_eval.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_query_inplace(self): # see gh-11149 df = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) expected = df.copy() expected = expected[expected['a'] == 2] df.query('a == 2', inplace=True) assert_frame_equal(expected, df) df = {} expected = {"a": 3} self.eval("a = 1 + 2", target=df, inplace=True) tm.assert_dict_equal(df, expected)
Example #30
Source File: test_events.py From outrigger with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_single_exon_alternative_events(self, splice_graph, exon1_i, exon1_name, mutually_exclusive_events, skipped_exon_events): test = splice_graph.single_exon_alternative_events( exon1_i, exon1_name) true = {'se': skipped_exon_events, 'mxe': mutually_exclusive_events} pdt.assert_dict_equal(test, true)