Python pandas.util.testing.assert_extension_array_equal() Examples
The following are 30
code examples of pandas.util.testing.assert_extension_array_equal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_datetimes.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_fillna_preserves_tz(self, method): dti = pd.date_range('2000-01-01', periods=5, freq='D', tz='US/Central') arr = DatetimeArray(dti, copy=True) arr[2] = pd.NaT fill_val = dti[1] if method == 'pad' else dti[3] expected = DatetimeArray._from_sequence( [dti[0], dti[1], fill_val, dti[3], dti[4]], freq=None, tz='US/Central' ) result = arr.fillna(method=method) tm.assert_extension_array_equal(result, expected) # assert that arr and dti were not modified in-place assert arr[2] is pd.NaT assert dti[2] == pd.Timestamp('2000-01-03', tz='US/Central')
Example #2
Source File: test_integer.py From recruit with Apache License 2.0 | 6 votes |
def test_integer_array_constructor(): values = np.array([1, 2, 3, 4], dtype='int64') mask = np.array([False, False, False, True], dtype='bool') result = IntegerArray(values, mask) expected = integer_array([1, 2, 3, np.nan], dtype='int64') tm.assert_extension_array_equal(result, expected) with pytest.raises(TypeError): IntegerArray(values.tolist(), mask) with pytest.raises(TypeError): IntegerArray(values, mask.tolist()) with pytest.raises(TypeError): IntegerArray(values.astype(float), mask) with pytest.raises(TypeError): IntegerArray(values)
Example #3
Source File: test_datetimes.py From coffeegrindsize with MIT License | 6 votes |
def test_fillna_preserves_tz(self, method): dti = pd.date_range('2000-01-01', periods=5, freq='D', tz='US/Central') arr = DatetimeArray(dti, copy=True) arr[2] = pd.NaT fill_val = dti[1] if method == 'pad' else dti[3] expected = DatetimeArray._from_sequence( [dti[0], dti[1], fill_val, dti[3], dti[4]], freq=None, tz='US/Central' ) result = arr.fillna(method=method) tm.assert_extension_array_equal(result, expected) # assert that arr and dti were not modified in-place assert arr[2] is pd.NaT assert dti[2] == pd.Timestamp('2000-01-03', tz='US/Central')
Example #4
Source File: test_integer.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_integer_array_constructor(): values = np.array([1, 2, 3, 4], dtype='int64') mask = np.array([False, False, False, True], dtype='bool') result = IntegerArray(values, mask) expected = integer_array([1, 2, 3, np.nan], dtype='int64') tm.assert_extension_array_equal(result, expected) with pytest.raises(TypeError): IntegerArray(values.tolist(), mask) with pytest.raises(TypeError): IntegerArray(values, mask.tolist()) with pytest.raises(TypeError): IntegerArray(values.astype(float), mask) with pytest.raises(TypeError): IntegerArray(values)
Example #5
Source File: test_datetimes.py From recruit with Apache License 2.0 | 6 votes |
def test_fillna_preserves_tz(self, method): dti = pd.date_range('2000-01-01', periods=5, freq='D', tz='US/Central') arr = DatetimeArray(dti, copy=True) arr[2] = pd.NaT fill_val = dti[1] if method == 'pad' else dti[3] expected = DatetimeArray._from_sequence( [dti[0], dti[1], fill_val, dti[3], dti[4]], freq=None, tz='US/Central' ) result = arr.fillna(method=method) tm.assert_extension_array_equal(result, expected) # assert that arr and dti were not modified in-place assert arr[2] is pd.NaT assert dti[2] == pd.Timestamp('2000-01-03', tz='US/Central')
Example #6
Source File: test_integer.py From coffeegrindsize with MIT License | 6 votes |
def test_integer_array_constructor(): values = np.array([1, 2, 3, 4], dtype='int64') mask = np.array([False, False, False, True], dtype='bool') result = IntegerArray(values, mask) expected = integer_array([1, 2, 3, np.nan], dtype='int64') tm.assert_extension_array_equal(result, expected) with pytest.raises(TypeError): IntegerArray(values.tolist(), mask) with pytest.raises(TypeError): IntegerArray(values, mask.tolist()) with pytest.raises(TypeError): IntegerArray(values.astype(float), mask) with pytest.raises(TypeError): IntegerArray(values)
Example #7
Source File: test_numpy.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_ufunc(): arr = PandasArray(np.array([-1.0, 0.0, 1.0])) result = np.abs(arr) expected = PandasArray(np.abs(arr._ndarray)) tm.assert_extension_array_equal(result, expected) r1, r2 = np.divmod(arr, np.add(arr, 2)) e1, e2 = np.divmod(arr._ndarray, np.add(arr._ndarray, 2)) e1 = PandasArray(e1) e2 = PandasArray(e2) tm.assert_extension_array_equal(r1, e1) tm.assert_extension_array_equal(r2, e2)
Example #8
Source File: test_integer.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_to_integer_array(values, to_dtype, result_dtype): # convert existing arrays to IntegerArrays result = integer_array(values, dtype=to_dtype) assert result.dtype == result_dtype() expected = integer_array(values, dtype=result_dtype()) tm.assert_extension_array_equal(result, expected)
Example #9
Source File: test_interval.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_set_closed(self, closed, new_closed): # GH 21670 array = IntervalArray.from_breaks(range(10), closed=closed) result = array.set_closed(new_closed) expected = IntervalArray.from_breaks(range(10), closed=new_closed) tm.assert_extension_array_equal(result, expected)
Example #10
Source File: test_interval.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_set_na(self, left_right_dtypes): left, right = left_right_dtypes result = IntervalArray.from_arrays(left, right) result[0] = np.nan expected_left = Index([left._na_value] + list(left[1:])) expected_right = Index([right._na_value] + list(right[1:])) expected = IntervalArray.from_arrays(expected_left, expected_right) tm.assert_extension_array_equal(result, expected)
Example #11
Source File: test_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_numpy_array(arr): ser = pd.Series(arr) result = ser.array expected = PandasArray(arr) tm.assert_extension_array_equal(result, expected)
Example #12
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_datetime64tz_aware(self): # GH 15939 result = Series( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).unique() expected = DatetimeArray._from_sequence(np.array([ Timestamp('2016-01-01 00:00:00-0500', tz="US/Eastern") ])) tm.assert_extension_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).unique() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique( Series(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = DatetimeArray._from_sequence(np.array([ Timestamp('2016-01-01', tz="US/Eastern"), ])) tm.assert_extension_array_equal(result, expected) result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected)
Example #13
Source File: groupby.py From coffeegrindsize with MIT License | 5 votes |
def test_grouping_grouper(self, data_for_grouping): df = pd.DataFrame({ "A": ["B", "B", None, None, "A", "A", "B", "C"], "B": data_for_grouping }) gr1 = df.groupby("A").grouper.groupings[0] gr2 = df.groupby("B").grouper.groupings[0] tm.assert_numpy_array_equal(gr1.grouper, df.A.values) tm.assert_extension_array_equal(gr2.grouper, data_for_grouping)
Example #14
Source File: test_decimal.py From coffeegrindsize with MIT License | 5 votes |
def test_take_na_value_other_decimal(self): arr = DecimalArray([decimal.Decimal('1.0'), decimal.Decimal('2.0')]) result = arr.take([0, -1], allow_fill=True, fill_value=decimal.Decimal('-1.0')) expected = DecimalArray([decimal.Decimal('1.0'), decimal.Decimal('-1.0')]) self.assert_extension_array_equal(result, expected)
Example #15
Source File: test_decimal.py From coffeegrindsize with MIT License | 5 votes |
def test_divmod_array(reverse, expected_div, expected_mod): # https://github.com/pandas-dev/pandas/issues/22930 arr = to_decimal([1, 2, 3, 4]) if reverse: div, mod = divmod(2, arr) else: div, mod = divmod(arr, 2) expected_div = to_decimal(expected_div) expected_mod = to_decimal(expected_mod) tm.assert_extension_array_equal(div, expected_div) tm.assert_extension_array_equal(mod, expected_mod)
Example #16
Source File: test_integer.py From coffeegrindsize with MIT License | 5 votes |
def test_pow(self): # https://github.com/pandas-dev/pandas/issues/22022 a = integer_array([1, np.nan, np.nan, 1]) b = integer_array([1, np.nan, 1, np.nan]) result = a ** b expected = pd.core.arrays.integer_array([1, np.nan, np.nan, 1]) tm.assert_extension_array_equal(result, expected)
Example #17
Source File: test_integer.py From coffeegrindsize with MIT License | 5 votes |
def test_to_integer_array_float(): result = integer_array([1., 2.]) expected = integer_array([1, 2]) tm.assert_extension_array_equal(result, expected) with pytest.raises(TypeError, match="cannot safely cast non-equivalent"): integer_array([1.5, 2.]) # for float dtypes, the itemsize is not preserved result = integer_array(np.array([1., 2.], dtype='float32')) assert result.dtype == Int64Dtype()
Example #18
Source File: test_integer.py From coffeegrindsize with MIT License | 5 votes |
def test_to_integer_array(values, to_dtype, result_dtype): # convert existing arrays to IntegerArrays result = integer_array(values, dtype=to_dtype) assert result.dtype == result_dtype() expected = integer_array(values, dtype=result_dtype()) tm.assert_extension_array_equal(result, expected)
Example #19
Source File: test_array.py From coffeegrindsize with MIT License | 5 votes |
def test_array_inference_fails(data): result = pd.array(data) expected = PandasArray(np.array(data, dtype=object)) tm.assert_extension_array_equal(result, expected)
Example #20
Source File: test_numpy.py From coffeegrindsize with MIT License | 5 votes |
def test_from_sequence_dtype(): arr = np.array([1, 2, 3], dtype='int64') result = PandasArray._from_sequence(arr, dtype='uint64') expected = PandasArray(np.array([1, 2, 3], dtype='uint64')) tm.assert_extension_array_equal(result, expected)
Example #21
Source File: test_numpy.py From coffeegrindsize with MIT License | 5 votes |
def test_ufunc(): arr = PandasArray(np.array([-1.0, 0.0, 1.0])) result = np.abs(arr) expected = PandasArray(np.abs(arr._ndarray)) tm.assert_extension_array_equal(result, expected) r1, r2 = np.divmod(arr, np.add(arr, 2)) e1, e2 = np.divmod(arr._ndarray, np.add(arr._ndarray, 2)) e1 = PandasArray(e1) e2 = PandasArray(e2) tm.assert_extension_array_equal(r1, e1) tm.assert_extension_array_equal(r2, e2)
Example #22
Source File: test_interval.py From coffeegrindsize with MIT License | 5 votes |
def test_set_closed(self, closed, new_closed): # GH 21670 array = IntervalArray.from_breaks(range(10), closed=closed) result = array.set_closed(new_closed) expected = IntervalArray.from_breaks(range(10), closed=new_closed) tm.assert_extension_array_equal(result, expected)
Example #23
Source File: test_interval.py From coffeegrindsize with MIT License | 5 votes |
def test_set_na(self, left_right_dtypes): left, right = left_right_dtypes result = IntervalArray.from_arrays(left, right) result[0] = np.nan expected_left = Index([left._na_value] + list(left[1:])) expected_right = Index([right._na_value] + list(right[1:])) expected = IntervalArray.from_arrays(expected_left, expected_right) tm.assert_extension_array_equal(result, expected)
Example #24
Source File: groupby.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_grouping_grouper(self, data_for_grouping): df = pd.DataFrame({ "A": ["B", "B", None, None, "A", "A", "B", "C"], "B": data_for_grouping }) gr1 = df.groupby("A").grouper.groupings[0] gr2 = df.groupby("B").grouper.groupings[0] tm.assert_numpy_array_equal(gr1.grouper, df.A.values) tm.assert_extension_array_equal(gr2.grouper, data_for_grouping)
Example #25
Source File: test_base.py From recruit with Apache License 2.0 | 5 votes |
def test_numpy_array(arr): ser = pd.Series(arr) result = ser.array expected = PandasArray(arr) tm.assert_extension_array_equal(result, expected)
Example #26
Source File: test_decimal.py From recruit with Apache License 2.0 | 5 votes |
def test_take_na_value_other_decimal(self): arr = DecimalArray([decimal.Decimal('1.0'), decimal.Decimal('2.0')]) result = arr.take([0, -1], allow_fill=True, fill_value=decimal.Decimal('-1.0')) expected = DecimalArray([decimal.Decimal('1.0'), decimal.Decimal('-1.0')]) self.assert_extension_array_equal(result, expected)
Example #27
Source File: test_decimal.py From recruit with Apache License 2.0 | 5 votes |
def test_divmod_array(reverse, expected_div, expected_mod): # https://github.com/pandas-dev/pandas/issues/22930 arr = to_decimal([1, 2, 3, 4]) if reverse: div, mod = divmod(2, arr) else: div, mod = divmod(arr, 2) expected_div = to_decimal(expected_div) expected_mod = to_decimal(expected_mod) tm.assert_extension_array_equal(div, expected_div) tm.assert_extension_array_equal(mod, expected_mod)
Example #28
Source File: test_integer.py From recruit with Apache License 2.0 | 5 votes |
def test_pow(self): # https://github.com/pandas-dev/pandas/issues/22022 a = integer_array([1, np.nan, np.nan, 1]) b = integer_array([1, np.nan, 1, np.nan]) result = a ** b expected = pd.core.arrays.integer_array([1, np.nan, np.nan, 1]) tm.assert_extension_array_equal(result, expected)
Example #29
Source File: test_integer.py From recruit with Apache License 2.0 | 5 votes |
def test_to_integer_array_float(): result = integer_array([1., 2.]) expected = integer_array([1, 2]) tm.assert_extension_array_equal(result, expected) with pytest.raises(TypeError, match="cannot safely cast non-equivalent"): integer_array([1.5, 2.]) # for float dtypes, the itemsize is not preserved result = integer_array(np.array([1., 2.], dtype='float32')) assert result.dtype == Int64Dtype()
Example #30
Source File: test_integer.py From recruit with Apache License 2.0 | 5 votes |
def test_to_integer_array(values, to_dtype, result_dtype): # convert existing arrays to IntegerArrays result = integer_array(values, dtype=to_dtype) assert result.dtype == result_dtype() expected = integer_array(values, dtype=result_dtype()) tm.assert_extension_array_equal(result, expected)