Python pandas.util.testing.assert_numpy_array_equal() Examples
The following are 30
code examples of pandas.util.testing.assert_numpy_array_equal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_array.py From recruit with Apache License 2.0 | 6 votes |
def test_nonzero(self): # Tests regression #21172. sa = pd.SparseArray([ float('nan'), float('nan'), 1, 0, 0, 2, 0, 0, 0, 3, 0, 0 ]) expected = np.array([2, 5, 9], dtype=np.int32) result, = sa.nonzero() tm.assert_numpy_array_equal(expected, result) sa = pd.SparseArray([0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0]) result, = sa.nonzero() tm.assert_numpy_array_equal(expected, result)
Example #2
Source File: methods.py From recruit with Apache License 2.0 | 6 votes |
def test_searchsorted(self, data_for_sorting, as_series): b, c, a = data_for_sorting arr = type(data_for_sorting)._from_sequence([a, b, c]) if as_series: arr = pd.Series(arr) assert arr.searchsorted(a) == 0 assert arr.searchsorted(a, side="right") == 1 assert arr.searchsorted(b) == 1 assert arr.searchsorted(b, side="right") == 2 assert arr.searchsorted(c) == 2 assert arr.searchsorted(c, side="right") == 3 result = arr.searchsorted(arr.take([0, 2])) expected = np.array([0, 2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) # sorter sorter = np.array([1, 2, 0]) assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
Example #3
Source File: test_window.py From recruit with Apache License 2.0 | 6 votes |
def test_pairwise_with_self(self, f): # DataFrame with itself, pairwise=True # note that we may construct the 1st level of the MI # in a non-motononic way, so compare accordingly results = [] for i, df in enumerate(self.df1s): result = f(df) tm.assert_index_equal(result.index.levels[0], df.index, check_names=False) tm.assert_numpy_array_equal(safe_sort(result.index.levels[1]), safe_sort(df.columns.unique())) tm.assert_index_equal(result.columns, df.columns) results.append(df) for i, result in enumerate(results): if i > 0: self.compare(result, results[0])
Example #4
Source File: test_libsparse.py From recruit with Apache License 2.0 | 6 votes |
def test_int_internal(self): idx = _make_index(4, np.array([2, 3], dtype=np.int32), kind='integer') assert isinstance(idx, IntIndex) assert idx.npoints == 2 tm.assert_numpy_array_equal(idx.indices, np.array([2, 3], dtype=np.int32)) idx = _make_index(4, np.array([], dtype=np.int32), kind='integer') assert isinstance(idx, IntIndex) assert idx.npoints == 0 tm.assert_numpy_array_equal(idx.indices, np.array([], dtype=np.int32)) idx = _make_index(4, np.array([0, 1, 2, 3], dtype=np.int32), kind='integer') assert isinstance(idx, IntIndex) assert idx.npoints == 4 tm.assert_numpy_array_equal(idx.indices, np.array([0, 1, 2, 3], dtype=np.int32))
Example #5
Source File: test_frame.py From recruit with Apache License 2.0 | 6 votes |
def test_stack_sparse_frame(self, float_frame, float_frame_int_kind, float_frame_fill0, float_frame_fill2): def _check(frame): dense_frame = frame.to_dense() # noqa wp = Panel.from_dict({'foo': frame}) from_dense_lp = wp.to_frame() from_sparse_lp = spf.stack_sparse_frame(frame) tm.assert_numpy_array_equal(from_dense_lp.values, from_sparse_lp.values) _check(float_frame) _check(float_frame_int_kind) # for now pytest.raises(Exception, _check, float_frame_fill0) pytest.raises(Exception, _check, float_frame_fill2)
Example #6
Source File: test_internals.py From recruit with Apache License 2.0 | 6 votes |
def test_delete(self): newb = self.fblock.copy() newb.delete(0) assert isinstance(newb.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([2, 4], dtype=np.int64)) assert (newb.values[0] == 1).all() newb = self.fblock.copy() newb.delete(1) assert isinstance(newb.mgr_locs, BlockPlacement) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([0, 4], dtype=np.int64)) assert (newb.values[1] == 2).all() newb = self.fblock.copy() newb.delete(2) tm.assert_numpy_array_equal(newb.mgr_locs.as_array, np.array([0, 2], dtype=np.int64)) assert (newb.values[1] == 1).all() newb = self.fblock.copy() with pytest.raises(Exception): newb.delete(3)
Example #7
Source File: test_internals.py From recruit with Apache License 2.0 | 6 votes |
def test_take(self): def assert_take_ok(mgr, axis, indexer): mat = mgr.as_array() taken = mgr.take(indexer, axis) tm.assert_numpy_array_equal(np.take(mat, indexer, axis), taken.as_array(), check_dtype=False) tm.assert_index_equal(mgr.axes[axis].take(indexer), taken.axes[axis]) for mgr in self.MANAGERS: for ax in range(mgr.ndim): # take/fancy indexer assert_take_ok(mgr, ax, []) assert_take_ok(mgr, ax, [0, 0, 0]) assert_take_ok(mgr, ax, lrange(mgr.shape[ax])) if mgr.shape[ax] >= 3: assert_take_ok(mgr, ax, [0, 1, 2]) assert_take_ok(mgr, ax, [-1, -2, -3])
Example #8
Source File: test_libsparse.py From recruit with Apache License 2.0 | 6 votes |
def test_int_internal(self): idx = _make_index(4, np.array([2, 3], dtype=np.int32), kind='integer') assert isinstance(idx, IntIndex) assert idx.npoints == 2 tm.assert_numpy_array_equal(idx.indices, np.array([2, 3], dtype=np.int32)) idx = _make_index(4, np.array([], dtype=np.int32), kind='integer') assert isinstance(idx, IntIndex) assert idx.npoints == 0 tm.assert_numpy_array_equal(idx.indices, np.array([], dtype=np.int32)) idx = _make_index(4, np.array([0, 1, 2, 3], dtype=np.int32), kind='integer') assert isinstance(idx, IntIndex) assert idx.npoints == 4 tm.assert_numpy_array_equal(idx.indices, np.array([0, 1, 2, 3], dtype=np.int32))
Example #9
Source File: test_integer.py From recruit with Apache License 2.0 | 6 votes |
def test_conversions(data_missing): # astype to object series df = pd.DataFrame({'A': data_missing}) result = df['A'].astype('object') expected = pd.Series(np.array([np.nan, 1], dtype=object), name='A') tm.assert_series_equal(result, expected) # convert to object ndarray # we assert that we are exactly equal # including type conversions of scalars result = df['A'].astype('object').values expected = np.array([np.nan, 1], dtype=object) tm.assert_numpy_array_equal(result, expected) for r, e in zip(result, expected): if pd.isnull(r): assert pd.isnull(e) elif is_integer(r): # PY2 can be int or long assert r == e assert is_integer(e) else: assert r == e assert type(r) == type(e)
Example #10
Source File: test_datetimes.py From recruit with Apache License 2.0 | 6 votes |
def test_array_interface_tz(self): tz = "US/Central" data = DatetimeArray(pd.date_range('2017', periods=2, tz=tz)) result = np.asarray(data) expected = np.array([pd.Timestamp('2017-01-01T00:00:00', tz=tz), pd.Timestamp('2017-01-02T00:00:00', tz=tz)], dtype=object) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype=object) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype='M8[ns]') expected = np.array(['2017-01-01T06:00:00', '2017-01-02T06:00:00'], dtype="M8[ns]") tm.assert_numpy_array_equal(result, expected)
Example #11
Source File: test_datetimelike.py From recruit with Apache License 2.0 | 6 votes |
def test_searchsorted(self): data = np.arange(10, dtype='i8') * 24 * 3600 * 10**9 arr = self.array_cls(data, freq='D') # scalar result = arr.searchsorted(arr[1]) assert result == 1 result = arr.searchsorted(arr[2], side="right") assert result == 3 # own-type result = arr.searchsorted(arr[1:3]) expected = np.array([1, 2], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) result = arr.searchsorted(arr[1:3], side="right") expected = np.array([2, 3], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) # Following numpy convention, NaT goes at the beginning # (unlike NaN which goes at the end) result = arr.searchsorted(pd.NaT) assert result == 0
Example #12
Source File: test_datetimelike.py From recruit with Apache License 2.0 | 6 votes |
def test_array_tz(self, tz_naive_fixture): # GH#23524 tz = tz_naive_fixture dti = pd.date_range('2016-01-01', periods=3, tz=tz) arr = DatetimeArray(dti) expected = dti.asi8.view('M8[ns]') result = np.array(arr, dtype='M8[ns]') tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) # check that we are not making copies when setting copy=False result = np.array(arr, dtype='M8[ns]', copy=False) assert result.base is expected.base assert result.base is not None result = np.array(arr, dtype='datetime64[ns]', copy=False) assert result.base is expected.base assert result.base is not None
Example #13
Source File: test_datetimelike.py From recruit with Apache License 2.0 | 6 votes |
def test_array_i8_dtype(self, tz_naive_fixture): tz = tz_naive_fixture dti = pd.date_range('2016-01-01', periods=3, tz=tz) arr = DatetimeArray(dti) expected = dti.asi8 result = np.array(arr, dtype='i8') tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype=np.int64) tm.assert_numpy_array_equal(result, expected) # check that we are still making copies when setting copy=False result = np.array(arr, dtype='i8', copy=False) assert result.base is not expected.base assert result.base is None
Example #14
Source File: test_datetimelike.py From recruit with Apache License 2.0 | 6 votes |
def test_array_interface(self, period_index): arr = PeriodArray(period_index) # default asarray gives objects result = np.asarray(arr) expected = np.array(list(arr), dtype=object) tm.assert_numpy_array_equal(result, expected) # to object dtype (same as default) result = np.asarray(arr, dtype=object) tm.assert_numpy_array_equal(result, expected) # to other dtypes with pytest.raises(TypeError): np.asarray(arr, dtype='int64') with pytest.raises(TypeError): np.asarray(arr, dtype='float64') result = np.asarray(arr, dtype='S20') expected = np.asarray(arr).astype('S20') tm.assert_numpy_array_equal(result, expected)
Example #15
Source File: test_missing.py From recruit with Apache License 2.0 | 6 votes |
def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) tm.assert_index_equal(c.categories, Index(["a", "b"])) tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8)) c[1] = np.nan tm.assert_index_equal(c.categories, Index(["a", "b"])) tm.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0], dtype=np.int8)) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) tm.assert_index_equal(c.categories, Index(["a", "b"])) tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8))
Example #16
Source File: test_indexing.py From recruit with Apache License 2.0 | 6 votes |
def test_categories_assigments(self): s = Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1], dtype=np.int64) s.categories = [1, 2, 3] tm.assert_numpy_array_equal(s.__array__(), exp) tm.assert_index_equal(s.categories, Index([1, 2, 3])) # lengthen with pytest.raises(ValueError): s.categories = [1, 2, 3, 4] # shorten with pytest.raises(ValueError): s.categories = [1, 2] # Combinations of sorted/unique:
Example #17
Source File: test_dtypes.py From recruit with Apache License 2.0 | 6 votes |
def test_astype(self, ordered): # string cat = Categorical(list('abbaaccc'), ordered=ordered) result = cat.astype(object) expected = np.array(cat) tm.assert_numpy_array_equal(result, expected) msg = 'could not convert string to float' with pytest.raises(ValueError, match=msg): cat.astype(float) # numeric cat = Categorical([0, 1, 2, 2, 1, 0, 1, 0, 2], ordered=ordered) result = cat.astype(object) expected = np.array(cat, dtype=object) tm.assert_numpy_array_equal(result, expected) result = cat.astype(int) expected = np.array(cat, dtype=np.int) tm.assert_numpy_array_equal(result, expected) result = cat.astype(float) expected = np.array(cat, dtype=np.float) tm.assert_numpy_array_equal(result, expected)
Example #18
Source File: test_datetimes.py From recruit with Apache License 2.0 | 5 votes |
def test_astype_int(self, dtype): arr = DatetimeArray._from_sequence([pd.Timestamp('2000'), pd.Timestamp('2001')]) result = arr.astype(dtype) if np.dtype(dtype).kind == 'u': expected_dtype = np.dtype('uint64') else: expected_dtype = np.dtype('int64') expected = arr.astype(expected_dtype) assert result.dtype == expected_dtype tm.assert_numpy_array_equal(result, expected)
Example #19
Source File: test_period.py From recruit with Apache License 2.0 | 5 votes |
def test_astype_copies(): arr = period_array(['2000', '2001', None], freq='D') result = arr.astype(np.int64, copy=False) # Add the `.base`, since we now use `.asi8` which returns a view. # We could maybe override it in PeriodArray to return ._data directly. assert result.base is arr._data result = arr.astype(np.int64, copy=True) assert result is not arr._data tm.assert_numpy_array_equal(result, arr._data.view('i8'))
Example #20
Source File: test_period.py From recruit with Apache License 2.0 | 5 votes |
def test_period_array_ok(data, freq, expected): result = period_array(data, freq=freq).asi8 expected = np.asarray(expected, dtype=np.int64) tm.assert_numpy_array_equal(result, expected)
Example #21
Source File: test_numpy.py From recruit with Apache License 2.0 | 5 votes |
def test_setitem(any_numpy_array): nparr = any_numpy_array arr = PandasArray(nparr, copy=True) arr[0] = arr[1] nparr[0] = nparr[1] tm.assert_numpy_array_equal(arr.to_numpy(), nparr) # ---------------------------------------------------------------------------- # Reductions
Example #22
Source File: test_timedeltas.py From recruit with Apache License 2.0 | 5 votes |
def test_astype_int(self, dtype): arr = TimedeltaArray._from_sequence([pd.Timedelta('1H'), pd.Timedelta('2H')]) result = arr.astype(dtype) if np.dtype(dtype).kind == 'u': expected_dtype = np.dtype('uint64') else: expected_dtype = np.dtype('int64') expected = arr.astype(expected_dtype) assert result.dtype == expected_dtype tm.assert_numpy_array_equal(result, expected)
Example #23
Source File: test_period.py From recruit with Apache License 2.0 | 5 votes |
def test_asi8(): result = period_array(['2000', '2001', None], freq='D').asi8 expected = np.array([10957, 11323, iNaT]) tm.assert_numpy_array_equal(result, expected)
Example #24
Source File: test_datetimes.py From recruit with Apache License 2.0 | 5 votes |
def test_array_interface(self): data = DatetimeArray(pd.date_range('2017', periods=2)) expected = np.array(['2017-01-01T00:00:00', '2017-01-02T00:00:00'], dtype='datetime64[ns]') result = np.asarray(data) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype=object) expected = np.array([pd.Timestamp('2017-01-01T00:00:00'), pd.Timestamp('2017-01-02T00:00:00')], dtype=object) tm.assert_numpy_array_equal(result, expected)
Example #25
Source File: test_datetimes.py From recruit with Apache License 2.0 | 5 votes |
def test_tz_dtype_matches(self): arr = DatetimeArray._from_sequence(['2000'], tz='US/Central') result, _, _ = sequence_to_dt64ns( arr, dtype=DatetimeTZDtype(tz="US/Central")) tm.assert_numpy_array_equal(arr._data, result)
Example #26
Source File: test_common.py From recruit with Apache License 2.0 | 5 votes |
def test_astype(): arr = DummyArray(np.array([1, 2, 3])) expected = np.array([1, 2, 3], dtype=object) result = arr.astype(object) tm.assert_numpy_array_equal(result, expected) result = arr.astype('object') tm.assert_numpy_array_equal(result, expected)
Example #27
Source File: test_datetimelike.py From recruit with Apache License 2.0 | 5 votes |
def test_array_interface(self, datetime_index): arr = DatetimeArray(datetime_index) # default asarray gives the same underlying data (for tz naive) result = np.asarray(arr) expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) # specifying M8[ns] gives the same result as default result = np.asarray(arr, dtype='datetime64[ns]') expected = arr._data assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype='datetime64[ns]', copy=False) assert result is expected tm.assert_numpy_array_equal(result, expected) result = np.array(arr, dtype='datetime64[ns]') assert result is not expected tm.assert_numpy_array_equal(result, expected) # to object dtype result = np.asarray(arr, dtype=object) expected = np.array(list(arr), dtype=object) tm.assert_numpy_array_equal(result, expected) # to other dtype always copies result = np.asarray(arr, dtype='int64') assert result is not arr.asi8 assert not np.may_share_memory(arr, result) expected = arr.asi8.copy() tm.assert_numpy_array_equal(result, expected) # other dtypes handled by numpy for dtype in ['float64', str]: result = np.asarray(arr, dtype=dtype) expected = np.asarray(arr).astype(dtype) tm.assert_numpy_array_equal(result, expected)
Example #28
Source File: test_datetimelike.py From recruit with Apache License 2.0 | 5 votes |
def test_array_object_dtype(self, tz_naive_fixture): # GH#23524 tz = tz_naive_fixture dti = pd.date_range('2016-01-01', periods=3, tz=tz) arr = DatetimeArray(dti) expected = np.array(list(dti)) result = np.array(arr, dtype=object) tm.assert_numpy_array_equal(result, expected) # also test the DatetimeIndex method while we're at it result = np.array(dti, dtype=object) tm.assert_numpy_array_equal(result, expected)
Example #29
Source File: test_datetimelike.py From recruit with Apache License 2.0 | 5 votes |
def test_bool_properties(self, datetime_index, propname): # in this case _bool_ops is just `is_leap_year` dti = datetime_index arr = DatetimeArray(dti) assert dti.freq == arr.freq result = getattr(arr, propname) expected = np.array(getattr(dti, propname), dtype=result.dtype) tm.assert_numpy_array_equal(result, expected)
Example #30
Source File: test_decimal.py From recruit with Apache License 2.0 | 5 votes |
def test_scalar_ops_from_sequence_raises(class_): # op(EA, EA) should return an EA, or an ndarray if it's not possible # to return an EA with the return values. arr = class_([ decimal.Decimal("1.0"), decimal.Decimal("2.0") ]) result = arr + arr expected = np.array([decimal.Decimal("2.0"), decimal.Decimal("4.0")], dtype="object") tm.assert_numpy_array_equal(result, expected)