Python pandas.util.testing.RNGContext() Examples

The following are 30 code examples of pandas.util.testing.RNGContext(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pandas.util.testing , or try the search function .
Example #1
Source File: test_boxplot_method.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_grouped_plot_fignums(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)
        df = DataFrame({'height': height, 'weight': weight, 'gender': gender})
        gb = df.groupby('gender')

        res = gb.plot()
        assert len(self.plt.get_fignums()) == 2
        assert len(res) == 2
        tm.close()

        res = gb.boxplot(return_type='axes')
        assert len(self.plt.get_fignums()) == 1
        assert len(res) == 2
        tm.close()

        # now works with GH 5610 as gender is excluded
        res = df.groupby('gender').hist()
        tm.close() 
Example #2
Source File: test_frame.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_partially_invalid_plot_data(self):
        with tm.RNGContext(42):
            df = DataFrame(randn(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in plotting._core._common_kinds:
                if not _ok_for_gaussian_kde(kind):
                    continue
                with pytest.raises(TypeError):
                    df.plot(kind=kind)

        with tm.RNGContext(42):
            # area plot doesn't support positive/negative mixed data
            kinds = ['area']
            df = DataFrame(rand(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in kinds:
                with pytest.raises(TypeError):
                    df.plot(kind=kind) 
Example #3
Source File: test_boxplot_method.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_grouped_plot_fignums(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)
        df = DataFrame({'height': height, 'weight': weight, 'gender': gender})
        gb = df.groupby('gender')

        res = gb.plot()
        assert len(self.plt.get_fignums()) == 2
        assert len(res) == 2
        tm.close()

        res = gb.boxplot(return_type='axes')
        assert len(self.plt.get_fignums()) == 1
        assert len(res) == 2
        tm.close()

        # now works with GH 5610 as gender is excluded
        res = df.groupby('gender').hist()
        tm.close() 
Example #4
Source File: test_frame.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_partially_invalid_plot_data(self):
        with tm.RNGContext(42):
            df = DataFrame(randn(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in plotting._core._common_kinds:
                if not _ok_for_gaussian_kde(kind):
                    continue
                with pytest.raises(TypeError):
                    df.plot(kind=kind)

        with tm.RNGContext(42):
            # area plot doesn't support positive/negative mixed data
            kinds = ['area']
            df = DataFrame(rand(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in kinds:
                with pytest.raises(TypeError):
                    df.plot(kind=kind) 
Example #5
Source File: test_frame.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_partially_invalid_plot_data(self):
        with tm.RNGContext(42):
            df = DataFrame(randn(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in plotting._core._common_kinds:
                if not _ok_for_gaussian_kde(kind):
                    continue
                with pytest.raises(TypeError):
                    df.plot(kind=kind)

        with tm.RNGContext(42):
            # area plot doesn't support positive/negative mixed data
            kinds = ['area']
            df = DataFrame(rand(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in kinds:
                with pytest.raises(TypeError):
                    df.plot(kind=kind) 
Example #6
Source File: test_boxplot_method.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_grouped_plot_fignums(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)
        df = DataFrame({'height': height, 'weight': weight, 'gender': gender})
        gb = df.groupby('gender')

        res = gb.plot()
        assert len(self.plt.get_fignums()) == 2
        assert len(res) == 2
        tm.close()

        res = gb.boxplot(return_type='axes')
        assert len(self.plt.get_fignums()) == 1
        assert len(res) == 2
        tm.close()

        # now works with GH 5610 as gender is excluded
        res = df.groupby('gender').hist()
        tm.close() 
Example #7
Source File: test_boxplot_method.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_grouped_plot_fignums(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)
        df = DataFrame({'height': height, 'weight': weight, 'gender': gender})
        gb = df.groupby('gender')

        res = gb.plot()
        assert len(self.plt.get_fignums()) == 2
        assert len(res) == 2
        tm.close()

        res = gb.boxplot(return_type='axes')
        assert len(self.plt.get_fignums()) == 1
        assert len(res) == 2
        tm.close()

        # now works with GH 5610 as gender is excluded
        res = df.groupby('gender').hist()
        tm.close() 
Example #8
Source File: test_frame.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_partially_invalid_plot_data(self):
        with tm.RNGContext(42):
            df = DataFrame(randn(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in plotting._core._common_kinds:
                if not _ok_for_gaussian_kde(kind):
                    continue
                with pytest.raises(TypeError):
                    df.plot(kind=kind)

        with tm.RNGContext(42):
            # area plot doesn't support positive/negative mixed data
            kinds = ['area']
            df = DataFrame(rand(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in kinds:
                with pytest.raises(TypeError):
                    df.plot(kind=kind) 
Example #9
Source File: test_frame.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_partially_invalid_plot_data(self):
        with tm.RNGContext(42):
            df = DataFrame(randn(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in plotting._core._common_kinds:
                if not _ok_for_gaussian_kde(kind):
                    continue
                with pytest.raises(TypeError):
                    df.plot(kind=kind)

        with tm.RNGContext(42):
            # area plot doesn't support positive/negative mixed data
            kinds = ['area']
            df = DataFrame(rand(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in kinds:
                with pytest.raises(TypeError):
                    df.plot(kind=kind) 
Example #10
Source File: test_boxplot_method.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_grouped_plot_fignums(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)
        df = DataFrame({'height': height, 'weight': weight, 'gender': gender})
        gb = df.groupby('gender')

        res = gb.plot()
        assert len(self.plt.get_fignums()) == 2
        assert len(res) == 2
        tm.close()

        res = gb.boxplot(return_type='axes')
        assert len(self.plt.get_fignums()) == 1
        assert len(res) == 2
        tm.close()

        # now works with GH 5610 as gender is excluded
        res = df.groupby('gender').hist()
        tm.close() 
Example #11
Source File: test_boxplot_method.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def test_grouped_plot_fignums(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)
        df = DataFrame({'height': height, 'weight': weight, 'gender': gender})
        gb = df.groupby('gender')

        res = gb.plot()
        assert len(self.plt.get_fignums()) == 2
        assert len(res) == 2
        tm.close()

        res = gb.boxplot(return_type='axes')
        assert len(self.plt.get_fignums()) == 1
        assert len(res) == 2
        tm.close()

        # now works with GH 5610 as gender is excluded
        res = df.groupby('gender').hist()
        tm.close() 
Example #12
Source File: test_frame.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def test_partially_invalid_plot_data(self):
        with tm.RNGContext(42):
            df = DataFrame(randn(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in plotting._core._common_kinds:
                if not _ok_for_gaussian_kde(kind):
                    continue
                with pytest.raises(TypeError):
                    df.plot(kind=kind)

        with tm.RNGContext(42):
            # area plot doesn't support positive/negative mixed data
            kinds = ['area']
            df = DataFrame(rand(10, 2), dtype=object)
            df[np.random.rand(df.shape[0]) > 0.5] = 'a'
            for kind in kinds:
                with pytest.raises(TypeError):
                    df.plot(kind=kind) 
Example #13
Source File: test_frame.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def test_line_area_stacked(self):
        with tm.RNGContext(42):
            df = DataFrame(rand(6, 4), columns=['w', 'x', 'y', 'z'])
            neg_df = -df
            # each column has either positive or negative value
            sep_df = DataFrame({'w': rand(6),
                                'x': rand(6),
                                'y': -rand(6),
                                'z': -rand(6)})
            # each column has positive-negative mixed value
            mixed_df = DataFrame(randn(6, 4),
                                 index=list(string.ascii_letters[:6]),
                                 columns=['w', 'x', 'y', 'z'])

            for kind in ['line', 'area']:
                ax1 = _check_plot_works(df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)

                ax1 = _check_plot_works(neg_df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(neg_df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)

                ax1 = _check_plot_works(sep_df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(sep_df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines[:2], ax2.lines[:2])
                self._compare_stacked_y_cood(ax1.lines[2:], ax2.lines[2:])

                _check_plot_works(mixed_df.plot, stacked=False)
                with pytest.raises(ValueError):
                    mixed_df.plot(stacked=True)

                _check_plot_works(df.plot, kind=kind, logx=True, stacked=True) 
Example #14
Source File: test_util.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_rng_context():
    import numpy as np

    expected0 = 1.764052345967664
    expected1 = 1.6243453636632417

    with tm.RNGContext(0):
        with tm.RNGContext(1):
            assert np.random.randn() == expected1
        assert np.random.randn() == expected0 
Example #15
Source File: test_groupby.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def test_series_groupby_plotting_nominally_works(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)

        weight.groupby(gender).plot()
        tm.close()
        height.groupby(gender).hist()
        tm.close()
        # Regression test for GH8733
        height.groupby(gender).plot(alpha=0.5)
        tm.close() 
Example #16
Source File: test_misc.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def test_scatter_matrix_axis(self):
        scatter_matrix = plotting.scatter_matrix

        with tm.RNGContext(42):
            df = DataFrame(randn(100, 3))

        # we are plotting multiples on a sub-plot
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(scatter_matrix, filterwarnings='always',
                                     frame=df, range_padding=.1)
        axes0_labels = axes[0][0].yaxis.get_majorticklabels()

        # GH 5662
        expected = ['-2', '0', '2']
        self._check_text_labels(axes0_labels, expected)
        self._check_ticks_props(
            axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)

        df[0] = ((df[0] - 2) / 3)

        # we are plotting multiples on a sub-plot
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(scatter_matrix, filterwarnings='always',
                                     frame=df, range_padding=.1)
        axes0_labels = axes[0][0].yaxis.get_majorticklabels()
        expected = ['-1.0', '-0.5', '0.0']
        self._check_text_labels(axes0_labels, expected)
        self._check_ticks_props(
            axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0) 
Example #17
Source File: test_hist_method.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def test_grouped_hist_legacy2(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender_int = np.random.choice([0, 1], size=n)
        df_int = DataFrame({'height': height, 'weight': weight,
                            'gender': gender_int})
        gb = df_int.groupby('gender')
        axes = gb.hist()
        assert len(axes) == 2
        assert len(self.plt.get_fignums()) == 2
        tm.close() 
Example #18
Source File: test_frame.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def test_line_area_stacked(self):
        with tm.RNGContext(42):
            df = DataFrame(rand(6, 4), columns=['w', 'x', 'y', 'z'])
            neg_df = -df
            # each column has either positive or negative value
            sep_df = DataFrame({'w': rand(6),
                                'x': rand(6),
                                'y': -rand(6),
                                'z': -rand(6)})
            # each column has positive-negative mixed value
            mixed_df = DataFrame(randn(6, 4),
                                 index=list(string.ascii_letters[:6]),
                                 columns=['w', 'x', 'y', 'z'])

            for kind in ['line', 'area']:
                ax1 = _check_plot_works(df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)

                ax1 = _check_plot_works(neg_df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(neg_df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)

                ax1 = _check_plot_works(sep_df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(sep_df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines[:2], ax2.lines[:2])
                self._compare_stacked_y_cood(ax1.lines[2:], ax2.lines[2:])

                _check_plot_works(mixed_df.plot, stacked=False)
                with pytest.raises(ValueError):
                    mixed_df.plot(stacked=True)

                _check_plot_works(df.plot, kind=kind, logx=True, stacked=True) 
Example #19
Source File: common.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def setup_method(self, method):

        import matplotlib as mpl
        mpl.rcdefaults()

        self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1()
        self.mpl_ge_2_1_0 = plotting._compat._mpl_ge_2_1_0()
        self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0()
        self.mpl_ge_2_2_2 = plotting._compat._mpl_ge_2_2_2()
        self.mpl_ge_3_0_0 = plotting._compat._mpl_ge_3_0_0()

        self.bp_n_objects = 7
        self.polycollection_factor = 2
        self.default_figsize = (6.4, 4.8)
        self.default_tick_position = 'left'

        n = 100
        with tm.RNGContext(42):
            gender = np.random.choice(['Male', 'Female'], size=n)
            classroom = np.random.choice(['A', 'B', 'C'], size=n)

            self.hist_df = DataFrame({'gender': gender,
                                      'classroom': classroom,
                                      'height': random.normal(66, 4, size=n),
                                      'weight': random.normal(161, 32, size=n),
                                      'category': random.randint(4, size=n)})

        self.tdf = tm.makeTimeDataFrame()
        self.hexbin_df = DataFrame({"A": np.random.uniform(size=20),
                                    "B": np.random.uniform(size=20),
                                    "C": np.arange(20) + np.random.uniform(
                                        size=20)}) 
Example #20
Source File: test_groupby.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def test_series_groupby_plotting_nominally_works(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)

        weight.groupby(gender).plot()
        tm.close()
        height.groupby(gender).hist()
        tm.close()
        # Regression test for GH8733
        height.groupby(gender).plot(alpha=0.5)
        tm.close() 
Example #21
Source File: test_misc.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_scatter_matrix_axis(self):
        scatter_matrix = plotting.scatter_matrix

        with tm.RNGContext(42):
            df = DataFrame(randn(100, 3))

        # we are plotting multiples on a sub-plot
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(scatter_matrix, filterwarnings='always',
                                     frame=df, range_padding=.1)
        axes0_labels = axes[0][0].yaxis.get_majorticklabels()

        # GH 5662
        if self.mpl_ge_2_0_0:
            expected = ['-2', '0', '2']
        else:
            expected = ['-2', '-1', '0', '1', '2']
        self._check_text_labels(axes0_labels, expected)
        self._check_ticks_props(
            axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)

        df[0] = ((df[0] - 2) / 3)

        # we are plotting multiples on a sub-plot
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(scatter_matrix, filterwarnings='always',
                                     frame=df, range_padding=.1)
        axes0_labels = axes[0][0].yaxis.get_majorticklabels()
        if self.mpl_ge_2_0_0:
            expected = ['-1.0', '-0.5', '0.0']
        else:
            expected = ['-1.2', '-1.0', '-0.8', '-0.6', '-0.4', '-0.2', '0.0']
        self._check_text_labels(axes0_labels, expected)
        self._check_ticks_props(
            axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0) 
Example #22
Source File: test_hist_method.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_grouped_hist_legacy2(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender_int = np.random.choice([0, 1], size=n)
        df_int = DataFrame({'height': height, 'weight': weight,
                            'gender': gender_int})
        gb = df_int.groupby('gender')
        axes = gb.hist()
        assert len(axes) == 2
        assert len(self.plt.get_fignums()) == 2
        tm.close() 
Example #23
Source File: test_frame.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_line_area_stacked(self):
        with tm.RNGContext(42):
            df = DataFrame(rand(6, 4), columns=['w', 'x', 'y', 'z'])
            neg_df = -df
            # each column has either positive or negative value
            sep_df = DataFrame({'w': rand(6),
                                'x': rand(6),
                                'y': -rand(6),
                                'z': -rand(6)})
            # each column has positive-negative mixed value
            mixed_df = DataFrame(randn(6, 4),
                                 index=list(string.ascii_letters[:6]),
                                 columns=['w', 'x', 'y', 'z'])

            for kind in ['line', 'area']:
                ax1 = _check_plot_works(df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)

                ax1 = _check_plot_works(neg_df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(neg_df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)

                ax1 = _check_plot_works(sep_df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(sep_df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines[:2], ax2.lines[:2])
                self._compare_stacked_y_cood(ax1.lines[2:], ax2.lines[2:])

                _check_plot_works(mixed_df.plot, stacked=False)
                with pytest.raises(ValueError):
                    mixed_df.plot(stacked=True)

                _check_plot_works(df.plot, kind=kind, logx=True, stacked=True) 
Example #24
Source File: test_groupby.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_series_groupby_plotting_nominally_works(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)

        weight.groupby(gender).plot()
        tm.close()
        height.groupby(gender).hist()
        tm.close()
        # Regression test for GH8733
        height.groupby(gender).plot(alpha=0.5)
        tm.close() 
Example #25
Source File: test_misc.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def test_scatter_matrix_axis(self):
        tm._skip_if_no_scipy()
        scatter_matrix = plotting.scatter_matrix

        with tm.RNGContext(42):
            df = DataFrame(randn(100, 3))

        # we are plotting multiples on a sub-plot
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(scatter_matrix, filterwarnings='always',
                                     frame=df, range_padding=.1)
        axes0_labels = axes[0][0].yaxis.get_majorticklabels()

        # GH 5662
        if self.mpl_ge_2_0_0:
            expected = ['-2', '0', '2']
        else:
            expected = ['-2', '-1', '0', '1', '2']
        self._check_text_labels(axes0_labels, expected)
        self._check_ticks_props(
            axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)

        df[0] = ((df[0] - 2) / 3)

        # we are plotting multiples on a sub-plot
        with tm.assert_produces_warning(UserWarning):
            axes = _check_plot_works(scatter_matrix, filterwarnings='always',
                                     frame=df, range_padding=.1)
        axes0_labels = axes[0][0].yaxis.get_majorticklabels()
        if self.mpl_ge_2_0_0:
            expected = ['-1.0', '-0.5', '0.0']
        else:
            expected = ['-1.2', '-1.0', '-0.8', '-0.6', '-0.4', '-0.2', '0.0']
        self._check_text_labels(axes0_labels, expected)
        self._check_ticks_props(
            axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0) 
Example #26
Source File: test_hist_method.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_grouped_hist_legacy2(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender_int = np.random.choice([0, 1], size=n)
        df_int = DataFrame({'height': height, 'weight': weight,
                            'gender': gender_int})
        gb = df_int.groupby('gender')
        axes = gb.hist()
        assert len(axes) == 2
        assert len(self.plt.get_fignums()) == 2
        tm.close() 
Example #27
Source File: test_frame.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_line_area_stacked(self):
        with tm.RNGContext(42):
            df = DataFrame(rand(6, 4), columns=['w', 'x', 'y', 'z'])
            neg_df = -df
            # each column has either positive or negative value
            sep_df = DataFrame({'w': rand(6),
                                'x': rand(6),
                                'y': -rand(6),
                                'z': -rand(6)})
            # each column has positive-negative mixed value
            mixed_df = DataFrame(randn(6, 4),
                                 index=list(string.ascii_letters[:6]),
                                 columns=['w', 'x', 'y', 'z'])

            for kind in ['line', 'area']:
                ax1 = _check_plot_works(df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)

                ax1 = _check_plot_works(neg_df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(neg_df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines, ax2.lines)

                ax1 = _check_plot_works(sep_df.plot, kind=kind, stacked=False)
                ax2 = _check_plot_works(sep_df.plot, kind=kind, stacked=True)
                self._compare_stacked_y_cood(ax1.lines[:2], ax2.lines[:2])
                self._compare_stacked_y_cood(ax1.lines[2:], ax2.lines[2:])

                _check_plot_works(mixed_df.plot, stacked=False)
                with pytest.raises(ValueError):
                    mixed_df.plot(stacked=True)

                _check_plot_works(df.plot, kind=kind, logx=True, stacked=True) 
Example #28
Source File: common.py    From recruit with Apache License 2.0 5 votes vote down vote up
def setup_method(self, method):

        import matplotlib as mpl
        mpl.rcdefaults()

        self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1()
        self.mpl_ge_2_1_0 = plotting._compat._mpl_ge_2_1_0()
        self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0()
        self.mpl_ge_2_2_2 = plotting._compat._mpl_ge_2_2_2()
        self.mpl_ge_3_0_0 = plotting._compat._mpl_ge_3_0_0()

        self.bp_n_objects = 7
        self.polycollection_factor = 2
        self.default_figsize = (6.4, 4.8)
        self.default_tick_position = 'left'

        n = 100
        with tm.RNGContext(42):
            gender = np.random.choice(['Male', 'Female'], size=n)
            classroom = np.random.choice(['A', 'B', 'C'], size=n)

            self.hist_df = DataFrame({'gender': gender,
                                      'classroom': classroom,
                                      'height': random.normal(66, 4, size=n),
                                      'weight': random.normal(161, 32, size=n),
                                      'category': random.randint(4, size=n)})

        self.tdf = tm.makeTimeDataFrame()
        self.hexbin_df = DataFrame({"A": np.random.uniform(size=20),
                                    "B": np.random.uniform(size=20),
                                    "C": np.arange(20) + np.random.uniform(
                                        size=20)}) 
Example #29
Source File: test_groupby.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_series_groupby_plotting_nominally_works(self):
        n = 10
        weight = Series(np.random.normal(166, 20, size=n))
        height = Series(np.random.normal(60, 10, size=n))
        with tm.RNGContext(42):
            gender = np.random.choice(['male', 'female'], size=n)

        weight.groupby(gender).plot()
        tm.close()
        height.groupby(gender).hist()
        tm.close()
        # Regression test for GH8733
        height.groupby(gender).plot(alpha=0.5)
        tm.close() 
Example #30
Source File: test_util.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_rng_context():
    import numpy as np

    expected0 = 1.764052345967664
    expected1 = 1.6243453636632417

    with tm.RNGContext(0):
        with tm.RNGContext(1):
            assert np.random.randn() == expected1
        assert np.random.randn() == expected0