Python pandas.util.testing.makeFloatIndex() Examples
The following are 30
code examples of pandas.util.testing.makeFloatIndex().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_base.py From coffeegrindsize with MIT License | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #2
Source File: test_packers.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def setup_method(self, method): super(TestIndex, self).setup_method(method) self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), 'cat': tm.makeCategoricalIndex(100), 'interval': tm.makeIntervalIndex(100), 'timedelta': tm.makeTimedeltaIndex(100, 'H') } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), }
Example #3
Source File: test_base.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeIntIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #4
Source File: test_base.py From recruit with Apache License 2.0 | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #5
Source File: test_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #6
Source File: test_packers.py From Computable with MIT License | 6 votes |
def setUp(self): super(TestIndex, self).setUp() self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), }
Example #7
Source File: test_base.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name='a') self.int_index = tm.makeIntIndex(10, name='a') self.float_index = tm.makeFloatIndex(10, name='a') self.dt_index = tm.makeDateIndex(10, name='a') self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize( tz='US/Eastern') self.period_index = tm.makePeriodIndex(10, name='a') self.string_index = tm.makeStringIndex(10, name='a') self.unicode_index = tm.makeUnicodeIndex(10, name='a') arr = np.random.randn(10) self.int_series = Series(arr, index=self.int_index, name='a') self.float_series = Series(arr, index=self.float_index, name='a') self.dt_series = Series(arr, index=self.dt_index, name='a') self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name='a') self.string_series = Series(arr, index=self.string_index, name='a') types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string', 'unicode'] fmts = ["{0}_{1}".format(t, f) for t in types for f in ['index', 'series']] self.objs = [getattr(self, f) for f in fmts if getattr(self, f, None) is not None]
Example #8
Source File: test_packers.py From vnpy_crypto with MIT License | 6 votes |
def setup_method(self, method): super(TestIndex, self).setup_method(method) self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), 'cat': tm.makeCategoricalIndex(100), 'interval': tm.makeIntervalIndex(100), 'timedelta': tm.makeTimedeltaIndex(100, 'H') } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), }
Example #9
Source File: test_base.py From vnpy_crypto with MIT License | 6 votes |
def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name='a') self.int_index = tm.makeIntIndex(10, name='a') self.float_index = tm.makeFloatIndex(10, name='a') self.dt_index = tm.makeDateIndex(10, name='a') self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize( tz='US/Eastern') self.period_index = tm.makePeriodIndex(10, name='a') self.string_index = tm.makeStringIndex(10, name='a') self.unicode_index = tm.makeUnicodeIndex(10, name='a') arr = np.random.randn(10) self.int_series = Series(arr, index=self.int_index, name='a') self.float_series = Series(arr, index=self.float_index, name='a') self.dt_series = Series(arr, index=self.dt_index, name='a') self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name='a') self.string_series = Series(arr, index=self.string_index, name='a') types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string', 'unicode'] fmts = ["{0}_{1}".format(t, f) for t in types for f in ['index', 'series']] self.objs = [getattr(self, f) for f in fmts if getattr(self, f, None) is not None]
Example #10
Source File: test_base.py From vnpy_crypto with MIT License | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #11
Source File: test_packers.py From recruit with Apache License 2.0 | 6 votes |
def setup_method(self, method): super(TestIndex, self).setup_method(method) self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), 'cat': tm.makeCategoricalIndex(100), 'interval': tm.makeIntervalIndex(100), 'timedelta': tm.makeTimedeltaIndex(100, 'H') } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), }
Example #12
Source File: test_base.py From twitter-stock-recommendation with MIT License | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #13
Source File: test_base.py From twitter-stock-recommendation with MIT License | 6 votes |
def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name='a') self.int_index = tm.makeIntIndex(10, name='a') self.float_index = tm.makeFloatIndex(10, name='a') self.dt_index = tm.makeDateIndex(10, name='a') self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize( tz='US/Eastern') self.period_index = tm.makePeriodIndex(10, name='a') self.string_index = tm.makeStringIndex(10, name='a') self.unicode_index = tm.makeUnicodeIndex(10, name='a') arr = np.random.randn(10) self.int_series = Series(arr, index=self.int_index, name='a') self.float_series = Series(arr, index=self.float_index, name='a') self.dt_series = Series(arr, index=self.dt_index, name='a') self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name='a') self.string_series = Series(arr, index=self.string_index, name='a') types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string', 'unicode'] fmts = ["{0}_{1}".format(t, f) for t in types for f in ['index', 'series']] self.objs = [getattr(self, f) for f in fmts if getattr(self, f, None) is not None]
Example #14
Source File: test_frequencies.py From coffeegrindsize with MIT License | 5 votes |
def test_invalid_index_types(self): # test all index types for i in [tm.makeIntIndex(10), tm.makeFloatIndex(10), tm.makePeriodIndex(10)]: pytest.raises(TypeError, lambda: frequencies.infer_freq(i)) # GH 10822 # odd error message on conversions to datetime for unicode if not is_platform_windows(): for i in [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)]: pytest.raises(ValueError, lambda: frequencies.infer_freq(i))
Example #15
Source File: test_frequencies.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_invalid_index_types(self): # test all index types for i in [tm.makeIntIndex(10), tm.makeFloatIndex(10), tm.makePeriodIndex(10)]: pytest.raises(TypeError, lambda: frequencies.infer_freq(i)) # GH 10822 # odd error message on conversions to datetime for unicode if not is_platform_windows(): for i in [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)]: pytest.raises(ValueError, lambda: frequencies.infer_freq(i))
Example #16
Source File: test_groupby.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_grouper_index_types(self): # related GH5375 # groupby misbehaving when using a Floatlike index df = DataFrame(np.arange(10).reshape(5, 2), columns=list('AB')) for index in [tm.makeFloatIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex]: df.index = index(len(df)) df.groupby(list('abcde')).apply(lambda x: x) df.index = list(reversed(df.index.tolist())) df.groupby(list('abcde')).apply(lambda x: x)
Example #17
Source File: test_resample.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_fails_on_no_datetime_index(self): index_names = ('Int64Index', 'Index', 'Float64Index', 'MultiIndex') index_funcs = (tm.makeIntIndex, tm.makeUnicodeIndex, tm.makeFloatIndex, lambda m: tm.makeCustomIndex(m, 2)) n = 2 for name, func in zip(index_names, index_funcs): index = func(n) df = DataFrame({'a': np.random.randn(n)}, index=index) with tm.assert_raises_regex(TypeError, "Only valid with " "DatetimeIndex, TimedeltaIndex " "or PeriodIndex, but got an " "instance of %r" % name): df.groupby(TimeGrouper('D'))
Example #18
Source File: test_frequencies.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_invalid_index_types(self): # test all index types for i in [tm.makeIntIndex(10), tm.makeFloatIndex(10), tm.makePeriodIndex(10)]: pytest.raises(TypeError, lambda: frequencies.infer_freq(i)) # GH 10822 # odd error message on conversions to datetime for unicode if not is_platform_windows(): for i in [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)]: pytest.raises(ValueError, lambda: frequencies.infer_freq(i))
Example #19
Source File: test_frequencies.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_invalid_index_types(self): # test all index types for i in [tm.makeIntIndex(10), tm.makeFloatIndex(10), tm.makePeriodIndex(10)]: pytest.raises(TypeError, lambda: frequencies.infer_freq(i)) # GH 10822 # odd error message on conversions to datetime for unicode if not is_platform_windows(): for i in [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)]: pytest.raises(ValueError, lambda: frequencies.infer_freq(i))
Example #20
Source File: test_resample.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_fails_on_no_datetime_index(self): index_names = ('Int64Index', 'Index', 'Float64Index', 'MultiIndex') index_funcs = (tm.makeIntIndex, tm.makeUnicodeIndex, tm.makeFloatIndex, lambda m: tm.makeCustomIndex(m, 2)) n = 2 for name, func in zip(index_names, index_funcs): index = func(n) df = DataFrame({'a': np.random.randn(n)}, index=index) with tm.assert_raises_regex(TypeError, "Only valid with " "DatetimeIndex, TimedeltaIndex " "or PeriodIndex, but got an " "instance of %r" % name): df.groupby(TimeGrouper('D'))
Example #21
Source File: test_generic.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_head_tail(self): # GH5370 o = self._construct(shape=10) # check all index types for index in [tm.makeFloatIndex, tm.makeIntIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex]: axis = o._get_axis_name(0) setattr(o, axis, index(len(getattr(o, axis)))) # Panel + dims try: o.head() except (NotImplementedError): pytest.skip('not implemented on {0}'.format( o.__class__.__name__)) self._compare(o.head(), o.iloc[:5]) self._compare(o.tail(), o.iloc[-5:]) # 0-len self._compare(o.head(0), o.iloc[0:0]) self._compare(o.tail(0), o.iloc[0:0]) # bounded self._compare(o.head(len(o) + 1), o) self._compare(o.tail(len(o) + 1), o) # neg index self._compare(o.head(-3), o.head(7)) self._compare(o.tail(-3), o.tail(7))
Example #22
Source File: test_grouping.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_grouper_index_types(self): # related GH5375 # groupby misbehaving when using a Floatlike index df = DataFrame(np.arange(10).reshape(5, 2), columns=list('AB')) for index in [tm.makeFloatIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex]: df.index = index(len(df)) df.groupby(list('abcde')).apply(lambda x: x) df.index = list(reversed(df.index.tolist())) df.groupby(list('abcde')).apply(lambda x: x)
Example #23
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_head_tail(self): # GH5370 o = self._construct(shape=10) # check all index types for index in [tm.makeFloatIndex, tm.makeIntIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex]: axis = o._get_axis_name(0) setattr(o, axis, index(len(getattr(o, axis)))) # Panel + dims try: o.head() except (NotImplementedError): pytest.skip('not implemented on {0}'.format( o.__class__.__name__)) self._compare(o.head(), o.iloc[:5]) self._compare(o.tail(), o.iloc[-5:]) # 0-len self._compare(o.head(0), o.iloc[0:0]) self._compare(o.tail(0), o.iloc[0:0]) # bounded self._compare(o.head(len(o) + 1), o) self._compare(o.tail(len(o) + 1), o) # neg index self._compare(o.head(-3), o.head(7)) self._compare(o.tail(-3), o.tail(7))
Example #24
Source File: test_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name='a') self.int_index = tm.makeIntIndex(10, name='a') self.float_index = tm.makeFloatIndex(10, name='a') self.dt_index = tm.makeDateIndex(10, name='a') self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize( tz='US/Eastern') self.period_index = tm.makePeriodIndex(10, name='a') self.string_index = tm.makeStringIndex(10, name='a') self.unicode_index = tm.makeUnicodeIndex(10, name='a') arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name='a') self.int_series = Series(arr, index=self.int_index, name='a') self.float_series = Series(arr, index=self.float_index, name='a') self.dt_series = Series(arr, index=self.dt_index, name='a') self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name='a') self.string_series = Series(arr, index=self.string_index, name='a') self.unicode_series = Series(arr, index=self.unicode_index, name='a') types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string', 'unicode'] self.indexes = [getattr(self, '{}_index'.format(t)) for t in types] self.series = [getattr(self, '{}_series'.format(t)) for t in types] self.objs = self.indexes + self.series
Example #25
Source File: test_pytables.py From Computable with MIT License | 5 votes |
def test_store_index_types(self): # GH5386 # test storing various index types with ensure_clean_store(self.path) as store: def check(format,index): df = DataFrame(np.random.randn(10,2),columns=list('AB')) df.index = index(len(df)) _maybe_remove(store, 'df') store.put('df',df,format=format) assert_frame_equal(df,store['df']) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex ]: check('table',index) check('fixed',index) # unicode index = tm.makeUnicodeIndex if compat.PY3: check('table',index) check('fixed',index) else: # only support for fixed types (and they have a perf warning) self.assertRaises(TypeError, check, 'table', index) with tm.assert_produces_warning(expected_warning=PerformanceWarning): check('fixed',index)
Example #26
Source File: test_resample.py From Computable with MIT License | 5 votes |
def test_fails_on_no_datetime_index(self): index_names = ('Int64Index', 'PeriodIndex', 'Index', 'Float64Index', 'MultiIndex') index_funcs = (tm.makeIntIndex, tm.makePeriodIndex, tm.makeUnicodeIndex, tm.makeFloatIndex, lambda m: tm.makeCustomIndex(m, 2)) n = 2 for name, func in zip(index_names, index_funcs): index = func(n) df = DataFrame({'a': np.random.randn(n)}, index=index) with tm.assertRaisesRegexp(TypeError, "axis must be a DatetimeIndex, " "but got an instance of %r" % name): df.groupby(TimeGrouper('D'))
Example #27
Source File: test_generic.py From vnpy_crypto with MIT License | 5 votes |
def test_head_tail(self): # GH5370 o = self._construct(shape=10) # check all index types for index in [tm.makeFloatIndex, tm.makeIntIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex]: axis = o._get_axis_name(0) setattr(o, axis, index(len(getattr(o, axis)))) # Panel + dims try: o.head() except (NotImplementedError): pytest.skip('not implemented on {0}'.format( o.__class__.__name__)) self._compare(o.head(), o.iloc[:5]) self._compare(o.tail(), o.iloc[-5:]) # 0-len self._compare(o.head(0), o.iloc[0:0]) self._compare(o.tail(0), o.iloc[0:0]) # bounded self._compare(o.head(len(o) + 1), o) self._compare(o.tail(len(o) + 1), o) # neg index self._compare(o.head(-3), o.head(7)) self._compare(o.tail(-3), o.tail(7))
Example #28
Source File: test_frequencies.py From vnpy_crypto with MIT License | 5 votes |
def test_invalid_index_types(self): # test all index types for i in [tm.makeIntIndex(10), tm.makeFloatIndex(10), tm.makePeriodIndex(10)]: pytest.raises(TypeError, lambda: frequencies.infer_freq(i)) # GH 10822 # odd error message on conversions to datetime for unicode if not is_platform_windows(): for i in [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)]: pytest.raises(ValueError, lambda: frequencies.infer_freq(i))
Example #29
Source File: test_resample.py From vnpy_crypto with MIT License | 5 votes |
def test_fails_on_no_datetime_index(self): index_names = ('Int64Index', 'Index', 'Float64Index', 'MultiIndex') index_funcs = (tm.makeIntIndex, tm.makeUnicodeIndex, tm.makeFloatIndex, lambda m: tm.makeCustomIndex(m, 2)) n = 2 for name, func in zip(index_names, index_funcs): index = func(n) df = DataFrame({'a': np.random.randn(n)}, index=index) with tm.assert_raises_regex(TypeError, "Only valid with " "DatetimeIndex, TimedeltaIndex " "or PeriodIndex, but got an " "instance of %r" % name): df.groupby(TimeGrouper('D'))
Example #30
Source File: test_grouping.py From recruit with Apache License 2.0 | 5 votes |
def test_grouper_index_types(self): # related GH5375 # groupby misbehaving when using a Floatlike index df = DataFrame(np.arange(10).reshape(5, 2), columns=list('AB')) for index in [tm.makeFloatIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex]: df.index = index(len(df)) df.groupby(list('abcde')).apply(lambda x: x) df.index = list(reversed(df.index.tolist())) df.groupby(list('abcde')).apply(lambda x: x)