Python pandas.util.testing.assert_contains_all() Examples
The following are 30
code examples of pandas.util.testing.assert_contains_all().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_base.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_union_dt_as_obj(self): # TODO: Replace with fixturesult with tm.assert_produces_warning(RuntimeWarning): firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) assert tm.equalContents(firstCat, appended) assert tm.equalContents(secondCat, self.strIndex) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat)
Example #2
Source File: test_base.py From vnpy_crypto with MIT License | 6 votes |
def test_union_dt_as_obj(self): # TODO: Replace with fixturesult with tm.assert_produces_warning(RuntimeWarning): firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) assert tm.equalContents(firstCat, appended) assert tm.equalContents(secondCat, self.strIndex) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat)
Example #3
Source File: test_base.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) tm.assert_index_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') assert isinstance(index, Index) assert index.name == 'name' tm.assert_numpy_array_equal(arr, index.values) arr[0] = "SOMEBIGLONGSTRING" assert index[0] != "SOMEBIGLONGSTRING" # what to do here? # arr = np.array(5.) # pytest.raises(Exception, arr.view, Index)
Example #4
Source File: test_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_constructor_regular(self, attr): # regular instance creation index = getattr(self, attr) tm.assert_contains_all(index, index)
Example #5
Source File: test_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_union_dt_as_obj(self, sort): # TODO: Replace with fixturesult firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) assert tm.equalContents(firstCat, appended) assert tm.equalContents(secondCat, self.strIndex) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat)
Example #6
Source File: test_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_constructor_casting(self): # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) tm.assert_index_equal(self.strIndex, index)
Example #7
Source File: test_excel.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_reading_all_sheets(self, ext): # Test reading all sheetnames by setting sheetname to None, # Ensure a dict is returned. # See PR #9450 basename = 'test_multisheet' dfs = self.get_exceldf(basename, ext, sheet_name=None) # ensure this is not alphabetical to test order preservation expected_keys = ['Charlie', 'Alpha', 'Beta'] tm.assert_contains_all(expected_keys, dfs.keys()) # Issue 9930 # Ensure sheet order is preserved assert expected_keys == list(dfs.keys())
Example #8
Source File: test_excel.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_reading_multiple_specific_sheets(self, ext): # Test reading specific sheetnames by specifying a mixed list # of integers and strings, and confirm that duplicated sheet # references (positions/names) are removed properly. # Ensure a dict is returned # See PR #9450 basename = 'test_multisheet' # Explicitly request duplicates. Only the set should be returned. expected_keys = [2, 'Charlie', 'Charlie'] dfs = self.get_exceldf(basename, ext, sheet_name=expected_keys) expected_keys = list(set(expected_keys)) tm.assert_contains_all(expected_keys, dfs.keys()) assert len(expected_keys) == len(dfs.keys())
Example #9
Source File: test_excel.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_reading_all_sheets_with_blank(self, ext): # Test reading all sheetnames by setting sheetname to None, # In the case where some sheets are blank. # Issue #11711 basename = 'blank_with_header' dfs = self.get_exceldf(basename, ext, sheet_name=None) expected_keys = ['Sheet1', 'Sheet2', 'Sheet3'] tm.assert_contains_all(expected_keys, dfs.keys()) # GH6403
Example #10
Source File: test_api.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts)
Example #11
Source File: test_excel.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_reading_all_sheets(self): # Test reading all sheetnames by setting sheetname to None, # Ensure a dict is returned. # See PR #9450 basename = 'test_multisheet' dfs = self.get_exceldf(basename, sheet_name=None) # ensure this is not alphabetical to test order preservation expected_keys = ['Charlie', 'Alpha', 'Beta'] tm.assert_contains_all(expected_keys, dfs.keys()) # Issue 9930 # Ensure sheet order is preserved assert expected_keys == list(dfs.keys())
Example #12
Source File: test_excel.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_reading_all_sheets_with_blank(self): # Test reading all sheetnames by setting sheetname to None, # In the case where some sheets are blank. # Issue #11711 basename = 'blank_with_header' dfs = self.get_exceldf(basename, sheet_name=None) expected_keys = ['Sheet1', 'Sheet2', 'Sheet3'] tm.assert_contains_all(expected_keys, dfs.keys()) # GH6403
Example #13
Source File: test_base.py From coffeegrindsize with MIT License | 5 votes |
def test_constructor_regular(self, attr): # regular instance creation index = getattr(self, attr) tm.assert_contains_all(index, index)
Example #14
Source File: test_base.py From coffeegrindsize with MIT License | 5 votes |
def test_constructor_casting(self): # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) tm.assert_index_equal(self.strIndex, index)
Example #15
Source File: test_base.py From coffeegrindsize with MIT License | 5 votes |
def test_union_dt_as_obj(self, sort): # TODO: Replace with fixturesult firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) assert tm.equalContents(firstCat, appended) assert tm.equalContents(secondCat, self.strIndex) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat)
Example #16
Source File: test_base.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_constructor_regular(self, attr): # regular instance creation index = getattr(self, attr) tm.assert_contains_all(index, index)
Example #17
Source File: test_base.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_constructor_casting(self): # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) tm.assert_index_equal(self.strIndex, index)
Example #18
Source File: test_excel.py From vnpy_crypto with MIT License | 5 votes |
def test_reading_all_sheets_with_blank(self, ext): # Test reading all sheetnames by setting sheetname to None, # In the case where some sheets are blank. # Issue #11711 basename = 'blank_with_header' dfs = self.get_exceldf(basename, ext, sheet_name=None) expected_keys = ['Sheet1', 'Sheet2', 'Sheet3'] tm.assert_contains_all(expected_keys, dfs.keys()) # GH6403
Example #19
Source File: test_base.py From recruit with Apache License 2.0 | 5 votes |
def test_constructor_regular(self, attr): # regular instance creation index = getattr(self, attr) tm.assert_contains_all(index, index)
Example #20
Source File: test_excel.py From vnpy_crypto with MIT License | 5 votes |
def test_reading_multiple_specific_sheets(self, ext): # Test reading specific sheetnames by specifying a mixed list # of integers and strings, and confirm that duplicated sheet # references (positions/names) are removed properly. # Ensure a dict is returned # See PR #9450 basename = 'test_multisheet' # Explicitly request duplicates. Only the set should be returned. expected_keys = [2, 'Charlie', 'Charlie'] dfs = self.get_exceldf(basename, ext, sheet_name=expected_keys) expected_keys = list(set(expected_keys)) tm.assert_contains_all(expected_keys, dfs.keys()) assert len(expected_keys) == len(dfs.keys())
Example #21
Source File: test_excel.py From vnpy_crypto with MIT License | 5 votes |
def test_reading_all_sheets(self, ext): # Test reading all sheetnames by setting sheetname to None, # Ensure a dict is returned. # See PR #9450 basename = 'test_multisheet' dfs = self.get_exceldf(basename, ext, sheet_name=None) # ensure this is not alphabetical to test order preservation expected_keys = ['Charlie', 'Alpha', 'Beta'] tm.assert_contains_all(expected_keys, dfs.keys()) # Issue 9930 # Ensure sheet order is preserved assert expected_keys == list(dfs.keys())
Example #22
Source File: test_base.py From vnpy_crypto with MIT License | 5 votes |
def test_constructor_casting(self): # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) tm.assert_index_equal(self.strIndex, index)
Example #23
Source File: test_base.py From recruit with Apache License 2.0 | 5 votes |
def test_constructor_casting(self): # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) tm.assert_index_equal(self.strIndex, index)
Example #24
Source File: test_base.py From vnpy_crypto with MIT License | 5 votes |
def test_constructor_regular(self, attr): # regular instance creation index = getattr(self, attr) tm.assert_contains_all(index, index)
Example #25
Source File: test_base.py From recruit with Apache License 2.0 | 5 votes |
def test_union_dt_as_obj(self, sort): # TODO: Replace with fixturesult firstCat = self.strIndex.union(self.dateIndex) secondCat = self.strIndex.union(self.strIndex) if self.dateIndex.dtype == np.object_: appended = np.append(self.strIndex, self.dateIndex) else: appended = np.append(self.strIndex, self.dateIndex.astype('O')) assert tm.equalContents(firstCat, appended) assert tm.equalContents(secondCat, self.strIndex) tm.assert_contains_all(self.strIndex, firstCat) tm.assert_contains_all(self.strIndex, secondCat) tm.assert_contains_all(self.dateIndex, firstCat)
Example #26
Source File: test_excel.py From recruit with Apache License 2.0 | 5 votes |
def test_reading_all_sheets_with_blank(self, ext): # Test reading all sheetnames by setting sheetname to None, # In the case where some sheets are blank. # Issue #11711 basename = 'blank_with_header' dfs = self.get_exceldf(basename, ext, sheet_name=None) expected_keys = ['Sheet1', 'Sheet2', 'Sheet3'] tm.assert_contains_all(expected_keys, dfs.keys()) # GH6403
Example #27
Source File: test_excel.py From recruit with Apache License 2.0 | 5 votes |
def test_reading_all_sheets(self, ext): # Test reading all sheetnames by setting sheetname to None, # Ensure a dict is returned. # See PR #9450 basename = 'test_multisheet' dfs = self.get_exceldf(basename, ext, sheet_name=None) # ensure this is not alphabetical to test order preservation expected_keys = ['Charlie', 'Alpha', 'Beta'] tm.assert_contains_all(expected_keys, dfs.keys()) # Issue 9930 # Ensure sheet order is preserved assert expected_keys == list(dfs.keys())
Example #28
Source File: test_excel.py From recruit with Apache License 2.0 | 5 votes |
def test_reading_multiple_specific_sheets(self, ext): # Test reading specific sheetnames by specifying a mixed list # of integers and strings, and confirm that duplicated sheet # references (positions/names) are removed properly. # Ensure a dict is returned # See PR #9450 basename = 'test_multisheet' # Explicitly request duplicates. Only the set should be returned. expected_keys = [2, 'Charlie', 'Charlie'] dfs = self.get_exceldf(basename, ext, sheet_name=expected_keys) expected_keys = list(set(expected_keys)) tm.assert_contains_all(expected_keys, dfs.keys()) assert len(expected_keys) == len(dfs.keys())
Example #29
Source File: test_to_from_scipy.py From vnpy_crypto with MIT License | 4 votes |
def test_from_to_scipy(spmatrix, index, columns, fill_value, dtype): # GH 4343 # Make one ndarray and from it one sparse matrix, both to be used for # constructing frames and comparing results arr = np.eye(3, dtype=dtype) # GH 16179 arr[0, 1] = dtype(2) try: spm = spmatrix(arr) assert spm.dtype == arr.dtype except (TypeError, AssertionError): # If conversion to sparse fails for this spmatrix type and arr.dtype, # then the combination is not currently supported in NumPy, so we # can just skip testing it thoroughly return sdf = SparseDataFrame(spm, index=index, columns=columns, default_fill_value=fill_value) # Expected result construction is kind of tricky for all # dtype-fill_value combinations; easiest to cast to something generic # and except later on rarr = arr.astype(object) rarr[arr == 0] = np.nan expected = SparseDataFrame(rarr, index=index, columns=columns).fillna( fill_value if fill_value is not None else np.nan) # Assert frame is as expected sdf_obj = sdf.astype(object) tm.assert_sp_frame_equal(sdf_obj, expected) tm.assert_frame_equal(sdf_obj.to_dense(), expected.to_dense()) # Assert spmatrices equal assert dict(sdf.to_coo().todok()) == dict(spm.todok()) # Ensure dtype is preserved if possible was_upcast = ((fill_value is None or is_float(fill_value)) and not is_object_dtype(dtype) and not is_float_dtype(dtype)) res_dtype = (bool if is_bool_dtype(dtype) else float if was_upcast else dtype) tm.assert_contains_all(sdf.dtypes, {np.dtype(res_dtype)}) assert sdf.to_coo().dtype == res_dtype # However, adding a str column results in an upcast to object sdf['strings'] = np.arange(len(sdf)).astype(str) assert sdf.to_coo().dtype == np.object_
Example #30
Source File: test_to_from_scipy.py From recruit with Apache License 2.0 | 4 votes |
def test_from_to_scipy_object(spmatrix, fill_value): # GH 4343 dtype = object columns = list('cd') index = list('ab') if (spmatrix is scipy.sparse.dok_matrix and LooseVersion( scipy.__version__) >= LooseVersion('0.19.0')): pytest.skip("dok_matrix from object does not work in SciPy >= 0.19") # Make one ndarray and from it one sparse matrix, both to be used for # constructing frames and comparing results arr = np.eye(2, dtype=dtype) try: spm = spmatrix(arr) assert spm.dtype == arr.dtype except (TypeError, AssertionError): # If conversion to sparse fails for this spmatrix type and arr.dtype, # then the combination is not currently supported in NumPy, so we # can just skip testing it thoroughly return sdf = SparseDataFrame(spm, index=index, columns=columns, default_fill_value=fill_value) # Expected result construction is kind of tricky for all # dtype-fill_value combinations; easiest to cast to something generic # and except later on rarr = arr.astype(object) rarr[arr == 0] = np.nan expected = SparseDataFrame(rarr, index=index, columns=columns).fillna( fill_value if fill_value is not None else np.nan) # Assert frame is as expected sdf_obj = sdf.astype(SparseDtype(object, fill_value)) tm.assert_sp_frame_equal(sdf_obj, expected) tm.assert_frame_equal(sdf_obj.to_dense(), expected.to_dense()) # Assert spmatrices equal assert dict(sdf.to_coo().todok()) == dict(spm.todok()) # Ensure dtype is preserved if possible res_dtype = object tm.assert_contains_all(sdf.dtypes.apply(lambda dtype: dtype.subtype), {np.dtype(res_dtype)}) assert sdf.to_coo().dtype == res_dtype