Python pandas.util.testing.makeDateIndex() Examples
The following are 30
code examples of pandas.util.testing.makeDateIndex().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.util.testing
, or try the search function
.
Example #1
Source File: test_reductions.py From recruit with Apache License 2.0 | 6 votes |
def get_objs(): indexes = [ tm.makeBoolIndex(10, name='a'), tm.makeIntIndex(10, name='a'), tm.makeFloatIndex(10, name='a'), tm.makeDateIndex(10, name='a'), tm.makeDateIndex(10, name='a').tz_localize(tz='US/Eastern'), tm.makePeriodIndex(10, name='a'), tm.makeStringIndex(10, name='a'), tm.makeUnicodeIndex(10, name='a') ] arr = np.random.randn(10) series = [Series(arr, index=idx, name='a') for idx in indexes] objs = indexes + series return objs
Example #2
Source File: test_packers.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def setup_method(self, method): super(TestIndex, self).setup_method(method) self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), 'cat': tm.makeCategoricalIndex(100), 'interval': tm.makeIntervalIndex(100), 'timedelta': tm.makeTimedeltaIndex(100, 'H') } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), }
Example #3
Source File: test_base.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeIntIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #4
Source File: test_setops.py From recruit with Apache License 2.0 | 6 votes |
def test_intersection2(self): first = tm.makeDateIndex(10) second = first[5:] intersect = first.intersection(second) assert tm.equalContents(intersect, second) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.intersection(case) assert tm.equalContents(result, second) third = Index(['a', 'b', 'c']) result = first.intersection(third) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected)
Example #5
Source File: test_series.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_line_area_nan_series(self): values = [1, 2, np.nan, 3] s = Series(values) ts = Series(values, index=tm.makeDateIndex(k=4)) for d in [s, ts]: ax = _check_plot_works(d.plot) masked = ax.lines[0].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp) tm.assert_numpy_array_equal( masked.mask, np.array([False, False, True, False])) expected = np.array([1, 2, 0, 3], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area, stacked=False) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
Example #6
Source File: test_series.py From recruit with Apache License 2.0 | 6 votes |
def test_line_area_nan_series(self): values = [1, 2, np.nan, 3] s = Series(values) ts = Series(values, index=tm.makeDateIndex(k=4)) for d in [s, ts]: ax = _check_plot_works(d.plot) masked = ax.lines[0].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp) tm.assert_numpy_array_equal( masked.mask, np.array([False, False, True, False])) expected = np.array([1, 2, 0, 3], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area, stacked=False) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
Example #7
Source File: test_reductions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def get_objs(): indexes = [ tm.makeBoolIndex(10, name='a'), tm.makeIntIndex(10, name='a'), tm.makeFloatIndex(10, name='a'), tm.makeDateIndex(10, name='a'), tm.makeDateIndex(10, name='a').tz_localize(tz='US/Eastern'), tm.makePeriodIndex(10, name='a'), tm.makeStringIndex(10, name='a'), tm.makeUnicodeIndex(10, name='a') ] arr = np.random.randn(10) series = [Series(arr, index=idx, name='a') for idx in indexes] objs = indexes + series return objs
Example #8
Source File: test_packers.py From recruit with Apache License 2.0 | 6 votes |
def setup_method(self, method): super(TestIndex, self).setup_method(method) self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), 'cat': tm.makeCategoricalIndex(100), 'interval': tm.makeIntervalIndex(100), 'timedelta': tm.makeTimedeltaIndex(100, 'H') } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), }
Example #9
Source File: test_base.py From vnpy_crypto with MIT License | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #10
Source File: test_series.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_line_area_nan_series(self): values = [1, 2, np.nan, 3] s = Series(values) ts = Series(values, index=tm.makeDateIndex(k=4)) for d in [s, ts]: ax = _check_plot_works(d.plot) masked = ax.lines[0].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp) tm.assert_numpy_array_equal( masked.mask, np.array([False, False, True, False])) expected = np.array([1, 2, 0, 3], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area, stacked=False) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
Example #11
Source File: test_setops.py From vnpy_crypto with MIT License | 6 votes |
def test_intersection2(self): first = tm.makeDateIndex(10) second = first[5:] intersect = first.intersection(second) assert tm.equalContents(intersect, second) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.intersection(case) assert tm.equalContents(result, second) third = Index(['a', 'b', 'c']) result = first.intersection(third) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected)
Example #12
Source File: test_setops.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_intersection2(self): first = tm.makeDateIndex(10) second = first[5:] intersect = first.intersection(second) assert tm.equalContents(intersect, second) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.intersection(case) assert tm.equalContents(result, second) third = Index(['a', 'b', 'c']) result = first.intersection(third) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected)
Example #13
Source File: test_series.py From vnpy_crypto with MIT License | 6 votes |
def test_line_area_nan_series(self): values = [1, 2, np.nan, 3] s = Series(values) ts = Series(values, index=tm.makeDateIndex(k=4)) for d in [s, ts]: ax = _check_plot_works(d.plot) masked = ax.lines[0].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp) tm.assert_numpy_array_equal( masked.mask, np.array([False, False, True, False])) expected = np.array([1, 2, 0, 3], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area, stacked=False) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
Example #14
Source File: test_base.py From vnpy_crypto with MIT License | 6 votes |
def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name='a') self.int_index = tm.makeIntIndex(10, name='a') self.float_index = tm.makeFloatIndex(10, name='a') self.dt_index = tm.makeDateIndex(10, name='a') self.dt_tz_index = tm.makeDateIndex(10, name='a').tz_localize( tz='US/Eastern') self.period_index = tm.makePeriodIndex(10, name='a') self.string_index = tm.makeStringIndex(10, name='a') self.unicode_index = tm.makeUnicodeIndex(10, name='a') arr = np.random.randn(10) self.int_series = Series(arr, index=self.int_index, name='a') self.float_series = Series(arr, index=self.float_index, name='a') self.dt_series = Series(arr, index=self.dt_index, name='a') self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name='a') self.string_series = Series(arr, index=self.string_index, name='a') types = ['bool', 'int', 'float', 'dt', 'dt_tz', 'period', 'string', 'unicode'] fmts = ["{0}_{1}".format(t, f) for t in types for f in ['index', 'series']] self.objs = [getattr(self, f) for f in fmts if getattr(self, f, None) is not None]
Example #15
Source File: test_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #16
Source File: test_pytables.py From Computable with MIT License | 6 votes |
def test_tseries_indices_frame(self): with ensure_clean_store(self.path) as store: idx = tm.makeDateIndex(10) df = DataFrame(np.random.randn(len(idx), 3), index=idx) store['a'] = df result = store['a'] assert_frame_equal(result, df) self.assertEquals(type(result.index), type(df.index)) self.assertEquals(result.index.freq, df.index.freq) idx = tm.makePeriodIndex(10) df = DataFrame(np.random.randn(len(idx), 3), idx) store['a'] = df result = store['a'] assert_frame_equal(result, df) self.assertEquals(type(result.index), type(df.index)) self.assertEquals(result.index.freq, df.index.freq)
Example #17
Source File: test_pytables.py From Computable with MIT License | 6 votes |
def test_tseries_indices_series(self): with ensure_clean_store(self.path) as store: idx = tm.makeDateIndex(10) ser = Series(np.random.randn(len(idx)), idx) store['a'] = ser result = store['a'] assert_series_equal(result, ser) self.assertEquals(type(result.index), type(ser.index)) self.assertEquals(result.index.freq, ser.index.freq) idx = tm.makePeriodIndex(10) ser = Series(np.random.randn(len(idx)), idx) store['a'] = ser result = store['a'] assert_series_equal(result, ser) self.assertEquals(type(result.index), type(ser.index)) self.assertEquals(result.index.freq, ser.index.freq)
Example #18
Source File: test_base.py From recruit with Apache License 2.0 | 6 votes |
def setup_method(self, method): self.indices = dict(unicodeIndex=tm.makeUnicodeIndex(100), strIndex=tm.makeStringIndex(100), dateIndex=tm.makeDateIndex(100), periodIndex=tm.makePeriodIndex(100), tdIndex=tm.makeTimedeltaIndex(100), intIndex=tm.makeIntIndex(100), uintIndex=tm.makeUIntIndex(100), rangeIndex=tm.makeRangeIndex(100), floatIndex=tm.makeFloatIndex(100), boolIndex=Index([True, False]), catIndex=tm.makeCategoricalIndex(100), empty=Index([]), tuples=MultiIndex.from_tuples(lzip( ['foo', 'bar', 'baz'], [1, 2, 3])), repeats=Index([0, 0, 1, 1, 2, 2])) self.setup_indices()
Example #19
Source File: test_packers.py From vnpy_crypto with MIT License | 6 votes |
def setup_method(self, method): super(TestIndex, self).setup_method(method) self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), 'cat': tm.makeCategoricalIndex(100), 'interval': tm.makeIntervalIndex(100), 'timedelta': tm.makeTimedeltaIndex(100, 'H') } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), }
Example #20
Source File: test_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_map_tseries_indices_accsr_return_index(self): date_index = tm.makeDateIndex(24, freq='h', name='hourly') expected = Index(range(24), name='hourly') tm.assert_index_equal(expected, date_index.map(lambda x: x.hour))
Example #21
Source File: test_datetime.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_isin(self): index = tm.makeDateIndex(4) result = index.isin(index) assert result.all() result = index.isin(list(index)) assert result.all() assert_almost_equal(index.isin([index[2], 5]), np.array([False, False, True, False]))
Example #22
Source File: test_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_outer_join_sort(self): left_index = Index(np.random.permutation(15)) right_index = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): result = left_index.join(right_index, how='outer') # right_index in this case because DatetimeIndex has join precedence # over Int64Index with tm.assert_produces_warning(RuntimeWarning): expected = right_index.astype(object).union( left_index.astype(object)) tm.assert_index_equal(result, expected)
Example #23
Source File: test_pytables.py From Computable with MIT License | 5 votes |
def test_store_index_types(self): # GH5386 # test storing various index types with ensure_clean_store(self.path) as store: def check(format,index): df = DataFrame(np.random.randn(10,2),columns=list('AB')) df.index = index(len(df)) _maybe_remove(store, 'df') store.put('df',df,format=format) assert_frame_equal(df,store['df']) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex ]: check('table',index) check('fixed',index) # unicode index = tm.makeUnicodeIndex if compat.PY3: check('table',index) check('fixed',index) else: # only support for fixed types (and they have a perf warning) self.assertRaises(TypeError, check, 'table', index) with tm.assert_produces_warning(expected_warning=PerformanceWarning): check('fixed',index)
Example #24
Source File: test_timeseries.py From Computable with MIT License | 5 votes |
def test_isin(self): index = tm.makeDateIndex(4) result = index.isin(index) self.assert_(result.all()) result = index.isin(list(index)) self.assert_(result.all()) assert_almost_equal(index.isin([index[2], 5]), [False, False, True, False])
Example #25
Source File: test_frame.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_line_area_nan_df(self): values1 = [1, 2, np.nan, 3] values2 = [3, np.nan, 2, 1] df = DataFrame({'a': values1, 'b': values2}) tdf = DataFrame({'a': values1, 'b': values2}, index=tm.makeDateIndex(k=4)) for d in [df, tdf]: ax = _check_plot_works(d.plot) masked1 = ax.lines[0].get_ydata() masked2 = ax.lines[1].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked1.data, 2), exp) exp = np.array([3, 2, 1], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked2.data, 1), exp) tm.assert_numpy_array_equal( masked1.mask, np.array([False, False, True, False])) tm.assert_numpy_array_equal( masked2.mask, np.array([False, True, False, False])) expected1 = np.array([1, 2, 0, 3], dtype=np.float64) expected2 = np.array([3, 0, 2, 1], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1) tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2) ax = _check_plot_works(d.plot.area) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1) tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected1 + expected2) ax = _check_plot_works(d.plot.area, stacked=False) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected1) tm.assert_numpy_array_equal(ax.lines[1].get_ydata(), expected2)
Example #26
Source File: test_scalar_compat.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_dti_timestamp_fields(self, field): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) expected = getattr(idx, field)[-1] if field == 'weekday_name': with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = getattr(Timestamp(idx[-1]), field) else: result = getattr(Timestamp(idx[-1]), field) assert result == expected
Example #27
Source File: test_base.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_outer_join_sort(self): left_idx = Index(np.random.permutation(15)) right_idx = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): joined = left_idx.join(right_idx, how='outer') # right_idx in this case because DatetimeIndex has join precedence over # Int64Index with tm.assert_produces_warning(RuntimeWarning): expected = right_idx.astype(object).union(left_idx.astype(object)) tm.assert_index_equal(joined, expected)
Example #28
Source File: test_base.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_str_attribute(self): # GH9068 methods = ['strip', 'rstrip', 'lstrip'] idx = Index([' jack', 'jill ', ' jesse ', 'frank']) for method in methods: expected = Index([getattr(str, method)(x) for x in idx.values]) tm.assert_index_equal( getattr(Index.str, method)(idx.str), expected) # create a few instances that are not able to use .str accessor indices = [Index(range(5)), tm.makeDateIndex(10), MultiIndex.from_tuples([('foo', '1'), ('bar', '3')]), PeriodIndex(start='2000', end='2010', freq='A')] for idx in indices: with tm.assert_raises_regex(AttributeError, 'only use .str accessor'): idx.str.repeat(2) idx = Index(['a b c', 'd e', 'f']) expected = Index([['a', 'b', 'c'], ['d', 'e'], ['f']]) tm.assert_index_equal(idx.str.split(), expected) tm.assert_index_equal(idx.str.split(expand=False), expected) expected = MultiIndex.from_tuples([('a', 'b', 'c'), ('d', 'e', np.nan), ('f', np.nan, np.nan)]) tm.assert_index_equal(idx.str.split(expand=True), expected) # test boolean case, should return np.array instead of boolean Index idx = Index(['a1', 'a2', 'b1', 'b2']) expected = np.array([True, True, False, False]) tm.assert_numpy_array_equal(idx.str.startswith('a'), expected) assert isinstance(idx.str.startswith('a'), np.ndarray) s = Series(range(4), index=idx) expected = Series(range(2), index=['a1', 'a2']) tm.assert_series_equal(s[s.index.str.startswith('a')], expected)
Example #29
Source File: test_converter.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_dateindex_conversion(self): decimals = 9 for freq in ('B', 'L', 'S'): dateindex = tm.makeDateIndex(k=10, freq=freq) rs = self.dtc.convert(dateindex, None, None) xp = converter.dates.date2num(dateindex._mpl_repr()) tm.assert_almost_equal(rs, xp, decimals)
Example #30
Source File: test_scalar_compat.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_dti_timestamp_freq_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) assert idx.freq == Timestamp(idx[-1], idx.freq).freq assert idx.freqstr == Timestamp(idx[-1], idx.freq).freqstr # ---------------------------------------------------------------- # DatetimeIndex.round