Python keras_applications.imagenet_utils.preprocess_input() Examples
The following are 16
code examples of keras_applications.imagenet_utils.preprocess_input().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras_applications.imagenet_utils
, or try the search function
.
Example #1
Source File: mobilenet_v2_gray.py From kaggle-rsna18 with MIT License | 6 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. This function applies the "Inception" preprocessing which converts the RGB values from [0, 255] to [-1, 1]. Note that this preprocessing function is different from `imagenet_utils.preprocess_input()`. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ x /= 128. x -= 1. return x.astype(np.float32) # This function is taken from the original tf repo. # It ensures that all layers have a channel number that is divisible by 8 # It can be seen here: # https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
Example #2
Source File: mixnets.py From keras_mixnets with MIT License | 5 votes |
def preprocess_input(x, data_format=None): return _preprocess(x, data_format, mode='torch', backend=K) # Obtained from https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mixnet/custom_layers.py
Example #3
Source File: gc_inception_resnet_v2.py From keras-global-context-networks with MIT License | 5 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf')
Example #4
Source File: gc_mobilenets.py From keras-global-context-networks with MIT License | 5 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf')
Example #5
Source File: efficientnet.py From keras-efficientnets with MIT License | 5 votes |
def preprocess_input(x, data_format=None): return _preprocess(x, data_format, mode='torch', backend=K) # Obtained from https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py
Example #6
Source File: imagenet_utils.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def preprocess_input(*args, **kwargs): return imagenet_utils.preprocess_input(*args, **kwargs)
Example #7
Source File: senet.py From classification_models with MIT License | 5 votes |
def preprocess_input(x, **kwargs): return imagenet_utils.preprocess_input(x, mode='torch', **kwargs)
Example #8
Source File: inception_resnet_v2_gray.py From kaggle-rsna18 with MIT License | 5 votes |
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf')
Example #9
Source File: data_generator.py From Amazing-Semantic-Segmentation with Apache License 2.0 | 5 votes |
def _get_batches_of_transformed_samples(self, index_array): batch_x = np.zeros(shape=(len(index_array),) + self.target_size + (3,)) batch_y = np.zeros(shape=(len(index_array),) + self.target_size + (self.num_classes,)) for i, idx in enumerate(index_array): image, label = load_image(self.images_list[idx]), load_image(self.labels_list[idx]) # random crop if self.image_data_generator.random_crop: image, label = random_crop(image, label, self.target_size) else: image, label = resize_image(image, label, self.target_size) # data augmentation if np.random.uniform(0., 1.) < self.data_aug_rate: # random vertical flip if np.random.randint(2): image, label = random_vertical_flip(image, label, self.image_data_generator.vertical_flip) # random horizontal flip if np.random.randint(2): image, label = random_horizontal_flip(image, label, self.image_data_generator.horizontal_flip) # random brightness if np.random.randint(2): image, label = random_brightness(image, label, self.image_data_generator.brightness_range) # random rotation if np.random.randint(2): image, label = random_rotation(image, label, self.image_data_generator.rotation_range) # random channel shift if np.random.randint(2): image, label = random_channel_shift(image, label, self.image_data_generator.channel_shift_range) # random zoom if np.random.randint(2): image, label = random_zoom(image, label, self.image_data_generator.zoom_range) image = imagenet_utils.preprocess_input(image.astype('float32'), data_format='channels_last', mode='torch') label = one_hot(label, self.num_classes) batch_x[i], batch_y[i] = image, label return batch_x, batch_y
Example #10
Source File: model.py From efficientnet with Apache License 2.0 | 5 votes |
def preprocess_input(x, **kwargs): kwargs = {k: v for k, v in kwargs.items() if k in ['backend', 'layers', 'models', 'utils']} return _preprocess_input(x, mode='torch', **kwargs)
Example #11
Source File: image_processing.py From ICCV2019-Horde with MIT License | 5 votes |
def preprocess(x, pre_process_method): if pre_process_method not in dic_mine_to_keras.keys(): raise ValueError("mode {} doesn't supported. Expected values: {}".format(pre_process_method, dic_mine_to_keras.keys())) if isinstance(x, np.ndarray): t = deepcopy(x) else: t = x return preprocess_input(x=t, mode=dic_mine_to_keras[pre_process_method], data_format='channels_last')
Example #12
Source File: efficientnet.py From EfficientDet with Apache License 2.0 | 5 votes |
def preprocess_input(x, **kwargs): kwargs = {k: v for k, v in kwargs.items() if k in ['backend', 'layers', 'models', 'utils']} return _preprocess_input(x, mode='torch', **kwargs)
Example #13
Source File: mobilenet_v3.py From keras-YOLOv3-model-set with MIT License | 5 votes |
def preprocess_input(x): """ "mode" option description in preprocess_input mode: One of "caffe", "tf" or "torch". - caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. - torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset. """ x = _preprocess_input(x, mode='tf', backend=K) #x /= 255. #mean = [0.485, 0.456, 0.406] #std = [0.229, 0.224, 0.225] #x[..., 0] -= mean[0] #x[..., 1] -= mean[1] #x[..., 2] -= mean[2] #if std is not None: #x[..., 0] /= std[0] #x[..., 1] /= std[1] #x[..., 2] /= std[2] return x
Example #14
Source File: efficientnet.py From keras-YOLOv3-model-set with MIT License | 5 votes |
def preprocess_input(x): """ "mode" option description in preprocess_input mode: One of "caffe", "tf" or "torch". - caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. - torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset. """ x = _preprocess_input(x, mode='torch', backend=K) #x /= 255. #mean = [0.485, 0.456, 0.406] #std = [0.229, 0.224, 0.225] #x[..., 0] -= mean[0] #x[..., 1] -= mean[1] #x[..., 2] -= mean[2] #if std is not None: #x[..., 0] /= std[0] #x[..., 1] /= std[1] #x[..., 2] /= std[2] return x
Example #15
Source File: inception_resnet_v2.py From segmentation_models with MIT License | 5 votes |
def preprocess_input(x, **kwargs): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)
Example #16
Source File: inception_v3.py From segmentation_models with MIT License | 5 votes |
def preprocess_input(x, **kwargs): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)