Python object_detection.exporter._build_detection_graph() Examples
The following are 12
code examples of object_detection.exporter._build_detection_graph().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.exporter
, or try the search function
.
Example #1
Source File: exporter_test.py From vehicle_counting_tensorflow with MIT License | 4 votes |
def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') keypoints = od_graph.get_tensor_by_name('detection_keypoints:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #2
Source File: exporter_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 4 votes |
def test_write_frozen_graph(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel(add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) outputs, _ = exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) output_node_names = ','.join(outputs.keys()) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() frozen_graph_def = exporter.freeze_graph_with_def_protos( input_graph_def=tf.get_default_graph().as_graph_def(), input_saver_def=input_saver_def, input_checkpoint=trained_checkpoint_prefix, output_node_names=output_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', clear_devices=True, initializer_nodes='') exporter.write_frozen_graph(inference_graph_path, frozen_graph_def) inference_graph = self._load_inference_graph(inference_graph_path) tf_example_np = np.expand_dims(self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8)), axis=0) with self.test_session(graph=inference_graph) as sess: tf_example = inference_graph.get_tensor_by_name('tf_example:0') boxes = inference_graph.get_tensor_by_name('detection_boxes:0') scores = inference_graph.get_tensor_by_name('detection_scores:0') classes = inference_graph.get_tensor_by_name('detection_classes:0') masks = inference_graph.get_tensor_by_name('detection_masks:0') num_detections = inference_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #3
Source File: exporter_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 4 votes |
def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel(add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #4
Source File: exporter_test.py From Person-Detection-and-Tracking with MIT License | 4 votes |
def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') keypoints = od_graph.get_tensor_by_name('detection_keypoints:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #5
Source File: exporter_test.py From Gun-Detector with Apache License 2.0 | 4 votes |
def test_write_frozen_graph(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel(add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) outputs, _ = exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) output_node_names = ','.join(outputs.keys()) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() frozen_graph_def = exporter.freeze_graph_with_def_protos( input_graph_def=tf.get_default_graph().as_graph_def(), input_saver_def=input_saver_def, input_checkpoint=trained_checkpoint_prefix, output_node_names=output_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', clear_devices=True, initializer_nodes='') exporter.write_frozen_graph(inference_graph_path, frozen_graph_def) inference_graph = self._load_inference_graph(inference_graph_path) tf_example_np = np.expand_dims(self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8)), axis=0) with self.test_session(graph=inference_graph) as sess: tf_example = inference_graph.get_tensor_by_name('tf_example:0') boxes = inference_graph.get_tensor_by_name('detection_boxes:0') scores = inference_graph.get_tensor_by_name('detection_scores:0') classes = inference_graph.get_tensor_by_name('detection_classes:0') masks = inference_graph.get_tensor_by_name('detection_masks:0') num_detections = inference_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #6
Source File: exporter_test.py From Gun-Detector with Apache License 2.0 | 4 votes |
def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel(add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #7
Source File: exporter_test.py From ros_tensorflow with Apache License 2.0 | 4 votes |
def test_write_frozen_graph(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=True) output_directory = os.path.join(tmp_dir, 'output') inference_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel(add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) outputs, _ = exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) output_node_names = ','.join(outputs.keys()) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() frozen_graph_def = exporter.freeze_graph_with_def_protos( input_graph_def=tf.get_default_graph().as_graph_def(), input_saver_def=input_saver_def, input_checkpoint=trained_checkpoint_prefix, output_node_names=output_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', clear_devices=True, initializer_nodes='') exporter.write_frozen_graph(inference_graph_path, frozen_graph_def) inference_graph = self._load_inference_graph(inference_graph_path) tf_example_np = np.expand_dims(self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8)), axis=0) with self.test_session(graph=inference_graph) as sess: tf_example = inference_graph.get_tensor_by_name('tf_example:0') boxes = inference_graph.get_tensor_by_name('detection_boxes:0') scores = inference_graph.get_tensor_by_name('detection_scores:0') classes = inference_graph.get_tensor_by_name('detection_classes:0') masks = inference_graph.get_tensor_by_name('detection_masks:0') num_detections = inference_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #8
Source File: exporter_test.py From ros_tensorflow with Apache License 2.0 | 4 votes |
def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel(add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #9
Source File: exporter_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 4 votes |
def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') keypoints = od_graph.get_tensor_by_name('detection_keypoints:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #10
Source File: exporter_test.py From MAX-Object-Detector with Apache License 2.0 | 4 votes |
def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') keypoints = od_graph.get_tensor_by_name('detection_keypoints:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #11
Source File: exporter_test.py From g-tensorflow-models with Apache License 2.0 | 4 votes |
def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') keypoints = od_graph.get_tensor_by_name('detection_keypoints:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])
Example #12
Source File: exporter_test.py From multilabel-image-classification-tensorflow with MIT License | 4 votes |
def test_write_graph_and_checkpoint(self): tmp_dir = self.get_temp_dir() trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(trained_checkpoint_prefix, use_moving_averages=False) output_directory = os.path.join(tmp_dir, 'output') model_path = os.path.join(output_directory, 'model.ckpt') meta_graph_path = model_path + '.meta' tf.gfile.MakeDirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel( add_detection_keypoints=True, add_detection_masks=True) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) exporter._build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() exporter.write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=trained_checkpoint_prefix) tf_example_np = np.hstack([self._create_tf_example( np.ones((4, 4, 3)).astype(np.uint8))] * 2) with tf.Graph().as_default() as od_graph: with self.test_session(graph=od_graph) as sess: new_saver = tf.train.import_meta_graph(meta_graph_path) new_saver.restore(sess, model_path) tf_example = od_graph.get_tensor_by_name('tf_example:0') boxes = od_graph.get_tensor_by_name('detection_boxes:0') scores = od_graph.get_tensor_by_name('detection_scores:0') classes = od_graph.get_tensor_by_name('detection_classes:0') keypoints = od_graph.get_tensor_by_name('detection_keypoints:0') masks = od_graph.get_tensor_by_name('detection_masks:0') num_detections = od_graph.get_tensor_by_name('num_detections:0') (boxes_np, scores_np, classes_np, keypoints_np, masks_np, num_detections_np) = sess.run( [boxes, scores, classes, keypoints, masks, num_detections], feed_dict={tf_example: tf_example_np}) self.assertAllClose(boxes_np, [[[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.8, 0.8]], [[0.5, 0.5, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]]) self.assertAllClose(scores_np, [[0.7, 0.6], [0.9, 0.0]]) self.assertAllClose(classes_np, [[1, 2], [2, 1]]) self.assertAllClose(keypoints_np, np.arange(48).reshape([2, 2, 6, 2])) self.assertAllClose(masks_np, np.arange(64).reshape([2, 2, 4, 4])) self.assertAllClose(num_detections_np, [2, 1])