Python object_detection.exporter.rewrite_nn_resize_op() Examples
The following are 13
code examples of object_detection.exporter.rewrite_nn_resize_op().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.exporter
, or try the search function
.
Example #1
Source File: exporter_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def test_rewrite_nn_resize_op(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x, 2) t = s + y exporter.rewrite_nn_resize_op() resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0], x) self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #2
Source File: exporter_test.py From MAX-Object-Detector with Apache License 2.0 | 6 votes |
def test_rewrite_nn_resize_op(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x, 2) t = s + y exporter.rewrite_nn_resize_op() resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0], x) self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #3
Source File: exporter_test.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def test_rewrite_nn_resize_op(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x, 2) t = s + y exporter.rewrite_nn_resize_op() resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0], x) self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #4
Source File: exporter_tf1_test.py From models with Apache License 2.0 | 6 votes |
def test_rewrite_nn_resize_op(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x, 2) t = s + y exporter.rewrite_nn_resize_op() resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0], x) self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #5
Source File: exporter_tf1_test.py From models with Apache License 2.0 | 6 votes |
def test_rewrite_nn_resize_op_odd_size(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) s = ops.nearest_neighbor_upsampling(x, 2) t = s[:, :19, :19, :] exporter.rewrite_nn_resize_op() resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0], x) self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #6
Source File: exporter_tf1_test.py From models with Apache License 2.0 | 6 votes |
def test_rewrite_nn_resize_op_quantized_odd_size(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) x_conv = slim.conv2d(x, 8, 1) s = ops.nearest_neighbor_upsampling(x_conv, 2) t = s[:, :19, :19, :] graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() graph_rewriter_config.quantization.delay = 500000 graph_rewriter_fn = graph_rewriter_builder.build( graph_rewriter_config, is_training=False) graph_rewriter_fn() exporter.rewrite_nn_resize_op(is_quantized=True) resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars') self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #7
Source File: exporter_test.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def test_rewrite_nn_resize_op(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x, 2) t = s + y exporter.rewrite_nn_resize_op() resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0], x) self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #8
Source File: exporter_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def test_rewrite_nn_resize_op_quantized(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) x_conv = tf.contrib.slim.conv2d(x, 8, 1) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x_conv, 2) t = s + y graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() graph_rewriter_config.quantization.delay = 500000 graph_rewriter_fn = graph_rewriter_builder.build( graph_rewriter_config, is_training=False) graph_rewriter_fn() exporter.rewrite_nn_resize_op(is_quantized=True) resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars') self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #9
Source File: exporter_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_rewrite_nn_resize_op_quantized(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) x_conv = tf.contrib.slim.conv2d(x, 8, 1) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x_conv, 2) t = s + y graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() graph_rewriter_config.quantization.delay = 500000 graph_rewriter_fn = graph_rewriter_builder.build( graph_rewriter_config, is_training=False) graph_rewriter_fn() exporter.rewrite_nn_resize_op(is_quantized=True) resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars') self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #10
Source File: exporter_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_rewrite_nn_resize_op_quantized(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) x_conv = tf.contrib.slim.conv2d(x, 8, 1) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x_conv, 2) t = s + y graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() graph_rewriter_config.quantization.delay = 500000 graph_rewriter_fn = graph_rewriter_builder.build( graph_rewriter_config, is_training=False) graph_rewriter_fn() exporter.rewrite_nn_resize_op(is_quantized=True) resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars') self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #11
Source File: exporter_tf1_test.py From models with Apache License 2.0 | 5 votes |
def test_rewrite_nn_resize_op_quantized(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) x_conv = slim.conv2d(x, 8, 1) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x_conv, 2) t = s + y graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() graph_rewriter_config.quantization.delay = 500000 graph_rewriter_fn = graph_rewriter_builder.build( graph_rewriter_config, is_training=False) graph_rewriter_fn() exporter.rewrite_nn_resize_op(is_quantized=True) resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars') self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)
Example #12
Source File: exporter_tf1_test.py From models with Apache License 2.0 | 5 votes |
def test_rewrite_nn_resize_op_multiple_path(self): g = tf.Graph() with g.as_default(): with tf.name_scope('nearest_upsampling'): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) x_stack = tf.stack([tf.stack([x] * 2, axis=3)] * 2, axis=2) x_reshape = tf.reshape(x_stack, [8, 20, 20, 8]) with tf.name_scope('nearest_upsampling'): x_2 = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) x_stack_2 = tf.stack([tf.stack([x_2] * 2, axis=3)] * 2, axis=2) x_reshape_2 = tf.reshape(x_stack_2, [8, 20, 20, 8]) t = x_reshape + x_reshape_2 exporter.rewrite_nn_resize_op() graph_def = g.as_graph_def() graph_def = strip_unused_lib.strip_unused( graph_def, input_node_names=[ 'nearest_upsampling/Placeholder', 'nearest_upsampling_1/Placeholder' ], output_node_names=['add'], placeholder_type_enum=dtypes.float32.as_datatype_enum) counter_resize_op = 0 t_input_ops = [op.name for op in t.op.inputs] for node in graph_def.node: # Make sure Stacks are replaced. self.assertNotEqual(node.op, 'Pack') if node.op == 'ResizeNearestNeighbor': counter_resize_op += 1 self.assertIn(six.ensure_str(node.name) + ':0', t_input_ops) self.assertEqual(counter_resize_op, 2)
Example #13
Source File: exporter_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_rewrite_nn_resize_op_quantized(self): g = tf.Graph() with g.as_default(): x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8)) x_conv = tf.contrib.slim.conv2d(x, 8, 1) y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8)) s = ops.nearest_neighbor_upsampling(x_conv, 2) t = s + y graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() graph_rewriter_config.quantization.delay = 500000 graph_rewriter_fn = graph_rewriter_builder.build( graph_rewriter_config, is_training=False) graph_rewriter_fn() exporter.rewrite_nn_resize_op(is_quantized=True) resize_op_found = False for op in g.get_operations(): if op.type == 'ResizeNearestNeighbor': resize_op_found = True self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars') self.assertEqual(op.outputs[0].consumers()[0], t.op) break self.assertTrue(resize_op_found)