Python nets.resnet_v1.resnet_v1_block() Examples
The following are 30
code examples of nets.resnet_v1.resnet_v1_block().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.resnet_v1
, or try the search function
.
Example #1
Source File: resnet_v1_test.py From R2CNN-Plus-Plus_Tensorflow with MIT License | 6 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #2
Source File: resnet_v1_test.py From R3Det_Tensorflow with MIT License | 6 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #3
Source File: resnet_v1_test.py From tumblr-emotions with Apache License 2.0 | 6 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #4
Source File: resnet_v1_test.py From RetinaNet_Tensorflow_Rotation with MIT License | 6 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #5
Source File: resnet_v1_test.py From R2CNN_Faster-RCNN_Tensorflow with MIT License | 6 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope)
Example #6
Source File: resnet_v1_test.py From Translation-Invariant-Attacks with Apache License 2.0 | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #7
Source File: resnet_v1_test.py From style_swap_tensorflow with Apache License 2.0 | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #8
Source File: resnet_v1_test.py From Machine-Learning-with-TensorFlow-1.x with MIT License | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #9
Source File: resnet_v1_test.py From Machine-Learning-with-TensorFlow-1.x with MIT License | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #10
Source File: resnet_v1_test.py From Translation-Invariant-Attacks with Apache License 2.0 | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #11
Source File: resnet_v1_test.py From Creative-Adversarial-Networks with MIT License | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #12
Source File: resnet_v1_test.py From TwinGAN with Apache License 2.0 | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #13
Source File: resnet_v1_test.py From TwinGAN with Apache License 2.0 | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #14
Source File: resnet_v1_test.py From style_swap_tensorflow with Apache License 2.0 | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #15
Source File: resnet_v1_test.py From ICPR_TextDection with GNU General Public License v3.0 | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #16
Source File: resnet_v1_test.py From MAX-Image-Segmenter with Apache License 2.0 | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points.keys())
Example #17
Source File: resnet_v1_test.py From MAX-Image-Segmenter with Apache License 2.0 | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #18
Source File: resnet_v1_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points.keys())
Example #19
Source File: resnet_v1_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #20
Source File: resnet_v1_test.py From Creative-Adversarial-Networks with MIT License | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #21
Source File: delf_v1.py From Gun-Detector with Apache License 2.0 | 5 votes |
def GetResnet50Subnetwork(self, images, is_training=False, global_pool=False, reuse=None): """Constructs resnet_v1_50 part of the DELF model. Args: images: A tensor of size [batch, height, width, channels]. is_training: Whether or not the model is in training mode. global_pool: If True, perform global average pooling after feature extraction. This may be useful for DELF's descriptor fine-tuning stage. reuse: Whether or not the layer and its variables should be reused. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is True, height_out = width_out = 1. end_points: A set of activations for external use. """ block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=64, num_units=3, stride=2), block('block2', base_depth=128, num_units=4, stride=2), block('block3', base_depth=256, num_units=6, stride=2), ] if self._target_layer_type == 'resnet_v1_50/block4': blocks.append(block('block4', base_depth=512, num_units=3, stride=1)) net, end_points = resnet_v1.resnet_v1( images, blocks, is_training=is_training, global_pool=global_pool, reuse=reuse, scope='resnet_v1_50') return net, end_points
Example #22
Source File: resnet_v1_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #23
Source File: resnet_v1_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points.keys())
Example #24
Source File: resnet_v1_test.py From CBAM-tensorflow-slim with MIT License | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #25
Source File: resnet_v1_test.py From CBAM-tensorflow-slim with MIT License | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points.keys())
Example #26
Source File: resnet_v1_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #27
Source File: resnet_v1_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope='resnet_v1_small'): """A shallow and thin ResNet v1 for faster tests.""" block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
Example #28
Source File: resnet_v1_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #29
Source File: delf_v1.py From yolo_v2 with Apache License 2.0 | 5 votes |
def GetResnet50Subnetwork(self, images, is_training=False, global_pool=False, reuse=None): """Constructs resnet_v1_50 part of the DELF model. Args: images: A tensor of size [batch, height, width, channels]. is_training: Whether or not the model is in training mode. global_pool: If True, perform global average pooling after feature extraction. This may be useful for DELF's descriptor fine-tuning stage. reuse: Whether or not the layer and its variables should be reused. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is True, height_out = width_out = 1. end_points: A set of activations for external use. """ block = resnet_v1.resnet_v1_block blocks = [ block('block1', base_depth=64, num_units=3, stride=2), block('block2', base_depth=128, num_units=4, stride=2), block('block3', base_depth=256, num_units=6, stride=2), ] if self._target_layer_type == 'resnet_v1_50/block4': blocks.append(block('block4', base_depth=512, num_units=3, stride=1)) net, end_points = resnet_v1.resnet_v1( images, blocks, is_training=is_training, global_pool=global_pool, reuse=reuse, scope='resnet_v1_50') return net, end_points
Example #30
Source File: resnet_v1_test.py From RetinaNet_Tensorflow_Rotation with MIT License | 5 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" blocks = [ resnet_v1.resnet_v1_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v1.resnet_v1_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)