Python blocks.extensions.Printing() Examples

The following are 4 code examples of blocks.extensions.Printing(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module blocks.extensions , or try the search function .
Example #1
Source File: test_main_loop.py    From attention-lvcsr with MIT License 6 votes vote down vote up
def test_training_interrupt():
    def process_batch(batch):
        time.sleep(0.1)

    algorithm = MockAlgorithm()
    algorithm.process_batch = process_batch

    main_loop = MockMainLoop(
        algorithm=algorithm,
        data_stream=IterableDataset(count()).get_example_stream(),
        extensions=[Printing()]
    )

    p = Process(target=main_loop.run)
    p.start()
    time.sleep(0.1)
    os.kill(p.pid, signal.SIGINT)
    time.sleep(0.1)
    assert p.is_alive()
    os.kill(p.pid, signal.SIGINT)
    time.sleep(0.2)
    assert not p.is_alive()
    p.join() 
Example #2
Source File: test_progressbar.py    From attention-lvcsr with MIT License 5 votes vote down vote up
def test_printing():
    main_loop = setup_mainloop(Printing())

    # We are happy if it does not crash or raise any exceptions
    main_loop.run() 
Example #3
Source File: train_celeba_classifier.py    From discgen with MIT License 4 votes vote down vote up
def run():
    streams = create_celeba_streams(training_batch_size=100,
                                    monitoring_batch_size=500,
                                    include_targets=True)
    main_loop_stream = streams[0]
    train_monitor_stream = streams[1]
    valid_monitor_stream = streams[2]

    cg, bn_dropout_cg = create_training_computation_graphs()

    # Compute parameter updates for the batch normalization population
    # statistics. They are updated following an exponential moving average.
    pop_updates = get_batch_normalization_updates(bn_dropout_cg)
    decay_rate = 0.05
    extra_updates = [(p, m * decay_rate + p * (1 - decay_rate))
                     for p, m in pop_updates]

    # Prepare algorithm
    step_rule = Adam()
    algorithm = GradientDescent(cost=bn_dropout_cg.outputs[0],
                                parameters=bn_dropout_cg.parameters,
                                step_rule=step_rule)
    algorithm.add_updates(extra_updates)

    # Prepare monitoring
    cost = bn_dropout_cg.outputs[0]
    cost.name = 'cost'
    train_monitoring = DataStreamMonitoring(
        [cost], train_monitor_stream, prefix="train",
        before_first_epoch=False, after_epoch=False, after_training=True,
        updates=extra_updates)

    cost, accuracy = cg.outputs
    cost.name = 'cost'
    accuracy.name = 'accuracy'
    monitored_quantities = [cost, accuracy]
    valid_monitoring = DataStreamMonitoring(
        monitored_quantities, valid_monitor_stream, prefix="valid",
        before_first_epoch=False, after_epoch=False, every_n_epochs=5)

    # Prepare checkpoint
    checkpoint = Checkpoint(
        'celeba_classifier.zip', every_n_epochs=5, use_cpickle=True)

    extensions = [Timing(), FinishAfter(after_n_epochs=50), train_monitoring,
                  valid_monitoring, checkpoint, Printing(), ProgressBar()]
    main_loop = MainLoop(data_stream=main_loop_stream, algorithm=algorithm,
                         extensions=extensions)
    main_loop.run() 
Example #4
Source File: train_celeba_vae.py    From discgen with MIT License 4 votes vote down vote up
def run(discriminative_regularization=True):
    streams = create_celeba_streams(training_batch_size=100,
                                    monitoring_batch_size=500,
                                    include_targets=False)
    main_loop_stream, train_monitor_stream, valid_monitor_stream = streams[:3]

    # Compute parameter updates for the batch normalization population
    # statistics. They are updated following an exponential moving average.
    rval = create_training_computation_graphs(discriminative_regularization)
    cg, bn_cg, variance_parameters = rval
    pop_updates = list(
        set(get_batch_normalization_updates(bn_cg, allow_duplicates=True)))
    decay_rate = 0.05
    extra_updates = [(p, m * decay_rate + p * (1 - decay_rate))
                     for p, m in pop_updates]

    model = Model(bn_cg.outputs[0])
    selector = Selector(
        find_bricks(
            model.top_bricks,
            lambda brick: brick.name in ('encoder_convnet', 'encoder_mlp',
                                         'decoder_convnet', 'decoder_mlp')))
    parameters = list(selector.get_parameters().values()) + variance_parameters

    # Prepare algorithm
    step_rule = Adam()
    algorithm = GradientDescent(cost=bn_cg.outputs[0],
                                parameters=parameters,
                                step_rule=step_rule)
    algorithm.add_updates(extra_updates)

    # Prepare monitoring
    monitored_quantities_list = []
    for graph in [bn_cg, cg]:
        cost, kl_term, reconstruction_term = graph.outputs
        cost.name = 'nll_upper_bound'
        avg_kl_term = kl_term.mean(axis=0)
        avg_kl_term.name = 'avg_kl_term'
        avg_reconstruction_term = -reconstruction_term.mean(axis=0)
        avg_reconstruction_term.name = 'avg_reconstruction_term'
        monitored_quantities_list.append(
            [cost, avg_kl_term, avg_reconstruction_term])
    train_monitoring = DataStreamMonitoring(
        monitored_quantities_list[0], train_monitor_stream, prefix="train",
        updates=extra_updates, after_epoch=False, before_first_epoch=False,
        every_n_epochs=5)
    valid_monitoring = DataStreamMonitoring(
        monitored_quantities_list[1], valid_monitor_stream, prefix="valid",
        after_epoch=False, before_first_epoch=False, every_n_epochs=5)

    # Prepare checkpoint
    save_path = 'celeba_vae_{}regularization.zip'.format(
        '' if discriminative_regularization else 'no_')
    checkpoint = Checkpoint(save_path, every_n_epochs=5, use_cpickle=True)

    extensions = [Timing(), FinishAfter(after_n_epochs=75), train_monitoring,
                  valid_monitoring, checkpoint, Printing(), ProgressBar()]
    main_loop = MainLoop(data_stream=main_loop_stream,
                         algorithm=algorithm, extensions=extensions)
    main_loop.run()