Python blocks.extensions.FinishAfter() Examples

The following are 8 code examples of blocks.extensions.FinishAfter(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module blocks.extensions , or try the search function .
Example #1
Source File: test_main_loop.py    From attention-lvcsr with MIT License 6 votes vote down vote up
def test_main_loop():
    old_config_profile_value = config.profile
    config.profile = True

    main_loop = MainLoop(
        MockAlgorithm(), IterableDataset(range(10)).get_example_stream(),
        extensions=[WriteBatchExtension(), FinishAfter(after_n_epochs=2)])
    main_loop.run()
    assert_raises(AttributeError, getattr, main_loop, 'model')

    assert main_loop.log.status['iterations_done'] == 20
    assert main_loop.log.status['_epoch_ends'] == [10, 20]
    assert len(main_loop.log) == 20
    for i in range(20):
        assert main_loop.log[i + 1]['batch'] == {'data': i % 10}

    config.profile = old_config_profile_value 
Example #2
Source File: test_main_loop.py    From attention-lvcsr with MIT License 5 votes vote down vote up
def test_training_resumption():
    def do_test(with_serialization):
        data_stream = IterableDataset(range(10)).get_example_stream()
        main_loop = MainLoop(
            MockAlgorithm(), data_stream,
            extensions=[WriteBatchExtension(),
                        FinishAfter(after_n_batches=14)])
        main_loop.run()
        assert main_loop.log.status['iterations_done'] == 14

        if with_serialization:
            main_loop = cPickle.loads(cPickle.dumps(main_loop))

        finish_after = unpack(
            [ext for ext in main_loop.extensions
             if isinstance(ext, FinishAfter)], singleton=True)
        finish_after.add_condition(
            ["after_batch"],
            predicate=lambda log: log.status['iterations_done'] == 27)
        main_loop.run()
        assert main_loop.log.status['iterations_done'] == 27
        assert main_loop.log.status['epochs_done'] == 2
        for i in range(27):
            assert main_loop.log[i + 1]['batch'] == {"data": i % 10}

    do_test(False)
    do_test(True) 
Example #3
Source File: test_main_loop.py    From attention-lvcsr with MIT License 5 votes vote down vote up
def test_error():
    ext = TrainingExtension()
    ext.after_batch = MagicMock(side_effect=KeyError)
    ext.on_error = MagicMock()
    main_loop = MockMainLoop(extensions=[ext, FinishAfter(after_epoch=True)])
    assert_raises(KeyError, main_loop.run)
    ext.on_error.assert_called_once_with()
    assert 'got_exception' in main_loop.log.current_row

    ext.on_error = MagicMock(side_effect=AttributeError)
    main_loop = MockMainLoop(extensions=[ext, FinishAfter(after_epoch=True)])
    assert_raises(KeyError, main_loop.run)
    ext.on_error.assert_called_once_with()
    assert 'got_exception' in main_loop.log.current_row 
Example #4
Source File: test_training.py    From attention-lvcsr with MIT License 5 votes vote down vote up
def test_shared_variable_modifier():
    weights = numpy.array([-1, 1], dtype=theano.config.floatX)
    features = [numpy.array(f, dtype=theano.config.floatX)
                for f in [[1, 2], [3, 4], [5, 6]]]
    targets = [(weights * f).sum() for f in features]
    n_batches = 3
    dataset = IterableDataset(dict(features=features, targets=targets))

    x = tensor.vector('features')
    y = tensor.scalar('targets')
    W = shared_floatx([0, 0], name='W')
    cost = ((x * W).sum() - y) ** 2
    cost.name = 'cost'

    step_rule = Scale(0.001)
    sgd = GradientDescent(cost=cost, parameters=[W],
                          step_rule=step_rule)
    main_loop = MainLoop(
        model=None, data_stream=dataset.get_example_stream(),
        algorithm=sgd,
        extensions=[
            FinishAfter(after_n_epochs=1),
            SharedVariableModifier(
                step_rule.learning_rate,
                lambda n: numpy.cast[theano.config.floatX](10. / n)
            )])

    main_loop.run()

    assert_allclose(step_rule.learning_rate.get_value(),
                    numpy.cast[theano.config.floatX](10. / n_batches)) 
Example #5
Source File: test_training.py    From attention-lvcsr with MIT License 5 votes vote down vote up
def test_shared_variable_modifier_two_parameters():
    weights = numpy.array([-1, 1], dtype=theano.config.floatX)
    features = [numpy.array(f, dtype=theano.config.floatX)
                for f in [[1, 2], [3, 4], [5, 6]]]
    targets = [(weights * f).sum() for f in features]
    n_batches = 3
    dataset = IterableDataset(dict(features=features, targets=targets))

    x = tensor.vector('features')
    y = tensor.scalar('targets')
    W = shared_floatx([0, 0], name='W')
    cost = ((x * W).sum() - y) ** 2
    cost.name = 'cost'

    step_rule = Scale(0.001)
    sgd = GradientDescent(cost=cost, parameters=[W],
                          step_rule=step_rule)
    modifier = SharedVariableModifier(
        step_rule.learning_rate,
        lambda _, val: numpy.cast[theano.config.floatX](val * 0.2))
    main_loop = MainLoop(
        model=None, data_stream=dataset.get_example_stream(),
        algorithm=sgd,
        extensions=[FinishAfter(after_n_epochs=1), modifier])

    main_loop.run()

    new_value = step_rule.learning_rate.get_value()
    assert_allclose(new_value,
                    0.001 * 0.2 ** n_batches,
                    atol=1e-5) 
Example #6
Source File: test_saveload.py    From attention-lvcsr with MIT License 4 votes vote down vote up
def test_checkpointing():
    # Create a main loop and checkpoint it
    mlp = MLP(activations=[None], dims=[10, 10], weights_init=Constant(1.),
              use_bias=False)
    mlp.initialize()
    W = mlp.linear_transformations[0].W
    x = tensor.vector('data')
    cost = mlp.apply(x).mean()
    data = numpy.random.rand(10, 10).astype(theano.config.floatX)
    data_stream = IterableDataset(data).get_example_stream()

    main_loop = MainLoop(
        data_stream=data_stream,
        algorithm=GradientDescent(cost=cost, parameters=[W]),
        extensions=[FinishAfter(after_n_batches=5),
                    Checkpoint('myweirdmodel.tar', parameters=[W])]
    )
    main_loop.run()

    # Load it again
    old_value = W.get_value()
    W.set_value(old_value * 2)
    main_loop = MainLoop(
        model=Model(cost),
        data_stream=data_stream,
        algorithm=GradientDescent(cost=cost, parameters=[W]),
        extensions=[Load('myweirdmodel.tar')]
    )
    main_loop.extensions[0].main_loop = main_loop
    main_loop._run_extensions('before_training')
    assert_allclose(W.get_value(), old_value)

    # Make sure things work too if the model was never saved before
    main_loop = MainLoop(
        model=Model(cost),
        data_stream=data_stream,
        algorithm=GradientDescent(cost=cost, parameters=[W]),
        extensions=[Load('mynonexisting.tar')]
    )
    main_loop.extensions[0].main_loop = main_loop
    main_loop._run_extensions('before_training')

    # Cleaning
    if os.path.exists('myweirdmodel.tar'):
        os.remove('myweirdmodel.tar') 
Example #7
Source File: train_celeba_classifier.py    From discgen with MIT License 4 votes vote down vote up
def run():
    streams = create_celeba_streams(training_batch_size=100,
                                    monitoring_batch_size=500,
                                    include_targets=True)
    main_loop_stream = streams[0]
    train_monitor_stream = streams[1]
    valid_monitor_stream = streams[2]

    cg, bn_dropout_cg = create_training_computation_graphs()

    # Compute parameter updates for the batch normalization population
    # statistics. They are updated following an exponential moving average.
    pop_updates = get_batch_normalization_updates(bn_dropout_cg)
    decay_rate = 0.05
    extra_updates = [(p, m * decay_rate + p * (1 - decay_rate))
                     for p, m in pop_updates]

    # Prepare algorithm
    step_rule = Adam()
    algorithm = GradientDescent(cost=bn_dropout_cg.outputs[0],
                                parameters=bn_dropout_cg.parameters,
                                step_rule=step_rule)
    algorithm.add_updates(extra_updates)

    # Prepare monitoring
    cost = bn_dropout_cg.outputs[0]
    cost.name = 'cost'
    train_monitoring = DataStreamMonitoring(
        [cost], train_monitor_stream, prefix="train",
        before_first_epoch=False, after_epoch=False, after_training=True,
        updates=extra_updates)

    cost, accuracy = cg.outputs
    cost.name = 'cost'
    accuracy.name = 'accuracy'
    monitored_quantities = [cost, accuracy]
    valid_monitoring = DataStreamMonitoring(
        monitored_quantities, valid_monitor_stream, prefix="valid",
        before_first_epoch=False, after_epoch=False, every_n_epochs=5)

    # Prepare checkpoint
    checkpoint = Checkpoint(
        'celeba_classifier.zip', every_n_epochs=5, use_cpickle=True)

    extensions = [Timing(), FinishAfter(after_n_epochs=50), train_monitoring,
                  valid_monitoring, checkpoint, Printing(), ProgressBar()]
    main_loop = MainLoop(data_stream=main_loop_stream, algorithm=algorithm,
                         extensions=extensions)
    main_loop.run() 
Example #8
Source File: train_celeba_vae.py    From discgen with MIT License 4 votes vote down vote up
def run(discriminative_regularization=True):
    streams = create_celeba_streams(training_batch_size=100,
                                    monitoring_batch_size=500,
                                    include_targets=False)
    main_loop_stream, train_monitor_stream, valid_monitor_stream = streams[:3]

    # Compute parameter updates for the batch normalization population
    # statistics. They are updated following an exponential moving average.
    rval = create_training_computation_graphs(discriminative_regularization)
    cg, bn_cg, variance_parameters = rval
    pop_updates = list(
        set(get_batch_normalization_updates(bn_cg, allow_duplicates=True)))
    decay_rate = 0.05
    extra_updates = [(p, m * decay_rate + p * (1 - decay_rate))
                     for p, m in pop_updates]

    model = Model(bn_cg.outputs[0])
    selector = Selector(
        find_bricks(
            model.top_bricks,
            lambda brick: brick.name in ('encoder_convnet', 'encoder_mlp',
                                         'decoder_convnet', 'decoder_mlp')))
    parameters = list(selector.get_parameters().values()) + variance_parameters

    # Prepare algorithm
    step_rule = Adam()
    algorithm = GradientDescent(cost=bn_cg.outputs[0],
                                parameters=parameters,
                                step_rule=step_rule)
    algorithm.add_updates(extra_updates)

    # Prepare monitoring
    monitored_quantities_list = []
    for graph in [bn_cg, cg]:
        cost, kl_term, reconstruction_term = graph.outputs
        cost.name = 'nll_upper_bound'
        avg_kl_term = kl_term.mean(axis=0)
        avg_kl_term.name = 'avg_kl_term'
        avg_reconstruction_term = -reconstruction_term.mean(axis=0)
        avg_reconstruction_term.name = 'avg_reconstruction_term'
        monitored_quantities_list.append(
            [cost, avg_kl_term, avg_reconstruction_term])
    train_monitoring = DataStreamMonitoring(
        monitored_quantities_list[0], train_monitor_stream, prefix="train",
        updates=extra_updates, after_epoch=False, before_first_epoch=False,
        every_n_epochs=5)
    valid_monitoring = DataStreamMonitoring(
        monitored_quantities_list[1], valid_monitor_stream, prefix="valid",
        after_epoch=False, before_first_epoch=False, every_n_epochs=5)

    # Prepare checkpoint
    save_path = 'celeba_vae_{}regularization.zip'.format(
        '' if discriminative_regularization else 'no_')
    checkpoint = Checkpoint(save_path, every_n_epochs=5, use_cpickle=True)

    extensions = [Timing(), FinishAfter(after_n_epochs=75), train_monitoring,
                  valid_monitoring, checkpoint, Printing(), ProgressBar()]
    main_loop = MainLoop(data_stream=main_loop_stream,
                         algorithm=algorithm, extensions=extensions)
    main_loop.run()