Python mxnet.nd.stack() Examples

The following are 24 code examples of mxnet.nd.stack(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module mxnet.nd , or try the search function .
Example #1
Source File: test_tpp_predictor.py    From gluon-ts with Apache License 2.0 6 votes vote down vote up
def hybrid_forward(
        self, F, past_target: Tensor, past_valid_length: Tensor
    ) -> Tuple[Tensor, Tensor]:
        """
        Return two tensors, of shape
        (batch_size, num_samples, max_prediction_length, target_dim)
        and (batch_size, num_samples) respectively.
        """
        batch_size = past_target.shape[0]
        assert past_valid_length.shape[0] == batch_size

        target_shape = (batch_size, self.num_parallel_samples, 25)
        pred_target = nd.stack(
            nd.random.uniform(shape=target_shape),
            nd.random.randint(0, 10, shape=target_shape).astype(np.float32),
            axis=-1,
        )
        pred_valid_length = nd.random.randint(
            15, 25 + 1, shape=target_shape[:2]
        )

        return pred_target, pred_valid_length 
Example #2
Source File: pose.py    From gluon-cv with Apache License 2.0 6 votes vote down vote up
def crop_resize_normalize(img, bbox_list, output_size,
                          mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
    output_list = []
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean, std)
    ])
    for bbox in bbox_list:
        x0 = max(int(bbox[0]), 0)
        y0 = max(int(bbox[1]), 0)
        x1 = min(int(bbox[2]), int(img.shape[1]))
        y1 = min(int(bbox[3]), int(img.shape[0]))
        w = x1 - x0
        h = y1 - y0
        res_img = image.fixed_crop(nd.array(img), x0, y0, w, h, (output_size[1], output_size[0]))
        res_img = transform_test(res_img)
        output_list.append(res_img)
    output_array = nd.stack(*output_list)
    return output_array 
Example #3
Source File: dataloader.py    From cascade_rcnn_gluon with Apache License 2.0 6 votes vote down vote up
def default_mp_pad_batchify_fn(data):
    """Use shared memory for collating data into batch, labels are padded to same shape"""
    if isinstance(data[0], nd.NDArray):
        out = nd.empty((len(data),) + data[0].shape, dtype=data[0].dtype,
                       ctx=context.Context('cpu_shared', 0))
        return nd.stack(*data, out=out)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [default_mp_pad_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        batch_size = len(data)
        pad = max([l.shape[0] for l in data] + [1,])
        buf = np.full((batch_size, pad, data[0].shape[-1]), -1, dtype=data[0].dtype)
        for i, l in enumerate(data):
            buf[i][:l.shape[0], :] = l
        return nd.array(buf, dtype=data[0].dtype, ctx=context.Context('cpu_shared', 0)) 
Example #4
Source File: dataloader.py    From gluon-cv with Apache License 2.0 6 votes vote down vote up
def default_mp_pad_batchify_fn(data):
    """Use shared memory for collating data into batch, labels are padded to same shape"""
    if isinstance(data[0], nd.NDArray):
        out = nd.empty((len(data),) + data[0].shape, dtype=data[0].dtype,
                       ctx=context.Context('cpu_shared', 0))
        return nd.stack(*data, out=out)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [default_mp_pad_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        batch_size = len(data)
        pad = max([l.shape[0] for l in data] + [1,])
        buf = np.full((batch_size, pad, data[0].shape[-1]), -1, dtype=data[0].dtype)
        for i, l in enumerate(data):
            buf[i][:l.shape[0], :] = l
        return nd.array(buf, dtype=data[0].dtype, ctx=context.Context('cpu_shared', 0)) 
Example #5
Source File: utils.py    From ya_mxdet with MIT License 6 votes vote down vote up
def bbox_overlaps(anchors:mx.nd.NDArray, gt:mx.nd.NDArray):
    """
    Get IoU of the anchors and ground truth bounding boxes.
    The shape of anchors and gt should be (N, 4) and (M, 4)
    So the shape of return value is (N, M)
    """
    ret = []
    for i in range(gt.shape[0]):
        cgt = gt[i].reshape((1, 4)).broadcast_to(anchors.shape)
        # inter
        x0 = nd.max(nd.stack(anchors[:,0], cgt[:,0]), axis=0)
        y0 = nd.max(nd.stack(anchors[:,1], cgt[:,1]), axis=0)
        x1 = nd.min(nd.stack(anchors[:,2], cgt[:,2]), axis=0)
        y1 = nd.min(nd.stack(anchors[:,3], cgt[:,3]), axis=0)
        
        inter = _get_area(nd.concatenate([x0.reshape((-1, 1)), 
                                         y0.reshape((-1, 1)), 
                                         x1.reshape((-1, 1)), 
                                         y1.reshape((-1, 1))], axis=1))
        outer = _get_area(anchors) + _get_area(cgt) - inter
        iou = inter / outer
        ret.append(iou.reshape((-1, 1)))
    ret=nd.concatenate(ret, axis=1)
    return ret 
Example #6
Source File: pose.py    From panoptic-fpn-gluon with Apache License 2.0 6 votes vote down vote up
def crop_resize_normalize(img, bbox_list, output_size):
    output_list = []
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    for bbox in bbox_list:
        x0 = max(int(bbox[0]), 0)
        y0 = max(int(bbox[1]), 0)
        x1 = min(int(bbox[2]), int(img.shape[1]))
        y1 = min(int(bbox[3]), int(img.shape[0]))
        w = x1 - x0
        h = y1 - y0
        res_img = image.fixed_crop(nd.array(img), x0, y0, w, h, (output_size[1], output_size[0]))
        res_img = transform_test(res_img)
        output_list.append(res_img)
    output_array = nd.stack(*output_list)
    return output_array 
Example #7
Source File: dataloader.py    From panoptic-fpn-gluon with Apache License 2.0 6 votes vote down vote up
def default_mp_pad_batchify_fn(data):
    """Use shared memory for collating data into batch, labels are padded to same shape"""
    if isinstance(data[0], nd.NDArray):
        out = nd.empty((len(data),) + data[0].shape, dtype=data[0].dtype,
                       ctx=context.Context('cpu_shared', 0))
        return nd.stack(*data, out=out)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [default_mp_pad_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        batch_size = len(data)
        pad = max([l.shape[0] for l in data] + [1,])
        buf = np.full((batch_size, pad, data[0].shape[-1]), -1, dtype=data[0].dtype)
        for i, l in enumerate(data):
            buf[i][:l.shape[0], :] = l
        return nd.array(buf, dtype=data[0].dtype, ctx=context.Context('cpu_shared', 0)) 
Example #8
Source File: cell.py    From ST-MetaNet with MIT License 5 votes vote down vote up
def forward(self, feature, data, begin_state):
        num_nodes, batch_size, length, _ = data.shape

        data = nd.split(data, axis=2, num_outputs=length, squeeze_axis=1)

        outputs, state = [], begin_state
        for input in data:
            output, state = self.forward_single(feature, input, state)
            outputs.append(output)

        outputs = nd.stack(*outputs, axis=2)
        return outputs, state 
Example #9
Source File: cell.py    From ST-MetaNet with MIT License 5 votes vote down vote up
def forward(self, feature, data, begin_state):
        num_nodes, batch_size, length, _ = data.shape

        data = nd.split(data, axis=2, num_outputs=length, squeeze_axis=1)

        outputs, state = [], begin_state
        for input in data:
            output, state = self.forward_single(feature, input, state)
            outputs.append(output)

        outputs = nd.stack(*outputs, axis=2)
        return outputs, state 
Example #10
Source File: utils.py    From ya_mxdet with MIT License 5 votes vote down vote up
def select_class_generator(class_id):
    def select_class(img, label):
        ret_label = []
        for item in label:
            if item[4] == class_id:
                ret_label.append(item)
        return img, np.stack(ret_label)
    return select_class 
Example #11
Source File: utils.py    From ya_mxdet with MIT License 5 votes vote down vote up
def _get_area(bbox:mx.nd.NDArray):
    zeros = mx.nd.zeros_like(bbox[:, 0])
    width = mx.nd.max(nd.stack(bbox[:, 2] - bbox[:, 0], zeros), axis=0)
    height = mx.nd.max(nd.stack(bbox[:, 3] - bbox[:, 1], zeros), axis=0)
    return width * height 
Example #12
Source File: build_graph.py    From dgl with Apache License 2.0 5 votes vote down vote up
def extract_edge_bbox(g):
    '''bbox encoding'''
    src, dst = g.edges(order='eid')
    n = g.number_of_edges()
    src_bbox = g.ndata['pred_bbox'][src.asnumpy()]
    dst_bbox = g.ndata['pred_bbox'][dst.asnumpy()]
    edge_bbox = nd.zeros((n, 4), ctx=g.ndata['pred_bbox'].context)
    edge_bbox[:,0] = nd.stack(src_bbox[:,0], dst_bbox[:,0]).min(axis=0)
    edge_bbox[:,1] = nd.stack(src_bbox[:,1], dst_bbox[:,1]).min(axis=0)
    edge_bbox[:,2] = nd.stack(src_bbox[:,2], dst_bbox[:,2]).max(axis=0)
    edge_bbox[:,3] = nd.stack(src_bbox[:,3], dst_bbox[:,3]).max(axis=0)
    return edge_bbox 
Example #13
Source File: dataloader.py    From panoptic-fpn-gluon with Apache License 2.0 5 votes vote down vote up
def default_pad_batchify_fn(data):
    """Collate data into batch, labels are padded to same shape"""
    if isinstance(data[0], nd.NDArray):
        return nd.stack(*data)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [default_pad_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        pad = max([l.shape[0] for l in data] + [1,])
        buf = np.full((len(data), pad, data[0].shape[-1]), -1, dtype=data[0].dtype)
        for i, l in enumerate(data):
            buf[i][:l.shape[0], :] = l
        return nd.array(buf, dtype=data[0].dtype) 
Example #14
Source File: dataloader.py    From cascade_rcnn_gluon with Apache License 2.0 5 votes vote down vote up
def default_pad_batchify_fn(data):
    """Collate data into batch, labels are padded to same shape"""
    if isinstance(data[0], nd.NDArray):
        return nd.stack(*data)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [default_pad_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        pad = max([l.shape[0] for l in data] + [1,])
        buf = np.full((len(data), pad, data[0].shape[-1]), -1, dtype=data[0].dtype)
        for i, l in enumerate(data):
            buf[i][:l.shape[0], :] = l
        return nd.array(buf, dtype=data[0].dtype) 
Example #15
Source File: dataloader.py    From gluon-cv with Apache License 2.0 5 votes vote down vote up
def tsn_mp_batchify_fn(data):
    """Collate data into batch. Use shared memory for stacking.
    Modify default batchify function for temporal segment networks.
    Change `nd.stack` to `nd.concat` since batch dimension already exists.
    """
    if isinstance(data[0], nd.NDArray):
        return nd.concat(*data, dim=0)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [tsn_mp_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        return nd.array(data, dtype=data.dtype,
                        ctx=context.Context('cpu_shared', 0)) 
Example #16
Source File: dataloader.py    From gluon-cv with Apache License 2.0 5 votes vote down vote up
def default_pad_batchify_fn(data):
    """Collate data into batch, labels are padded to same shape"""
    if isinstance(data[0], nd.NDArray):
        return nd.stack(*data)
    elif isinstance(data[0], tuple):
        data = zip(*data)
        return [default_pad_batchify_fn(i) for i in data]
    else:
        data = np.asarray(data)
        pad = max([l.shape[0] for l in data] + [1,])
        buf = np.full((len(data), pad, data[0].shape[-1]), -1, dtype=data[0].dtype)
        for i, l in enumerate(data):
            buf[i][:l.shape[0], :] = l
        return nd.array(buf, dtype=data[0].dtype) 
Example #17
Source File: image.py    From cascade_rcnn_gluon with Apache License 2.0 4 votes vote down vote up
def ten_crop(src, size):
    """Crop 10 regions from an array.
    This is performed same as:
    http://chainercv.readthedocs.io/en/stable/reference/transforms.html#ten-crop

    This method crops 10 regions. All regions will be in shape
    :obj`size`. These regions consist of 1 center crop and 4 corner
    crops and horizontal flips of them.
    The crops are ordered in this order.
    * center crop
    * top-left crop
    * bottom-left crop
    * top-right crop
    * bottom-right crop
    * center crop (flipped horizontally)
    * top-left crop (flipped horizontally)
    * bottom-left crop (flipped horizontally)
    * top-right crop (flipped horizontally)
    * bottom-right crop (flipped horizontally)

    Parameters
    ----------
    src : mxnet.nd.NDArray
        Input image.
    size : tuple
        Tuple of length 2, as (width, height) of the cropped areas.

    Returns
    -------
    mxnet.nd.NDArray
        The cropped images with shape (10, size[1], size[0], C)

    """
    h, w, _ = src.shape
    ow, oh = size

    if h < oh or w < ow:
        raise ValueError(
            "Cannot crop area {} from image with size ({}, {})".format(str(size), h, w))

    center = src[(h - oh) // 2:(h + oh) // 2, (w - ow) // 2:(w + ow) // 2, :]
    tl = src[0:oh, 0:ow, :]
    bl = src[h - oh:h, 0:ow, :]
    tr = src[0:oh, w - ow:w, :]
    br = src[h - oh:h, w - ow:w, :]
    crops = nd.stack(*[center, tl, bl, tr, br], axis=0)
    crops = nd.concat(*[crops, nd.flip(crops, axis=2)], dim=0)
    return crops 
Example #18
Source File: decoder.py    From mxnet-centernet with MIT License 4 votes vote down vote up
def decode_centernet(heat, wh, reg=None, cat_spec_wh=False, K=100, flag_split=False):
    batch, cat, height, width = heat.shape

    # perform nms on heatmaps, find the peaks
    heat = _nms(heat)

    scores, inds, clses, ys, xs = _topk(heat, K=K)
    if reg is not None:
        reg = _tranpose_and_gather_feat(reg, inds)
        reg = nd.reshape(reg, (batch, K, 2))
        xs = nd.reshape(xs, (batch, K, 1)) + reg[:, :, 0:1]
        ys = nd.reshape(ys, (batch, K, 1)) + reg[:, :, 1:2]
    else:
        xs = nd.reshape(xs, (batch, K, 1)) + 0.5
        ys = nd.reshape(ys, (batch, K, 1)) + 0.5

    wh = _tranpose_and_gather_feat(wh, inds)
    if cat_spec_wh:
        wh = nd.reshape(wh, (batch, K, cat, 2))
        clses_ind = nd.reshape(clses, (batch, K, 1, 1))

        clses_ind = nd.stack(clses_ind, clses_ind, axis=3)   #becomes (batch, K, 1, 2)
        clses_ind = clses_ind.astype('int64')

        wh = wh.gather_nd(2, clses_ind)
        wh = nd.reshape(wh, (batch, K, 2))
    else:
        wh = nd.reshape(wh, (batch, K, 2))

    clses  = nd.reshape(clses, (batch, K, 1)).astype('float32')
    scores = nd.reshape(scores, (batch, K, 1))

    bboxes =  nd.concat(xs - wh[:, :, 0:1] / 2,
                        ys - wh[:, :, 1:2] / 2,
                        xs + wh[:, :, 0:1] / 2,
                        ys + wh[:, :, 1:2] / 2,
                        dim=2)

    if flag_split is True:
        return bboxes, scores, clses
    else:
        detections = nd.concat(bboxes, scores, clses, dim=2)
        return detections 
Example #19
Source File: seq2seq.py    From ST-MetaNet with MIT License 4 votes vote down vote up
def forward(self, feature, label, begin_states, is_training):
        ''' Decode the hidden states to a temporal sequence.

        Parameters
        ----------
        feature: a NDArray with shape [n, d].
        label: a NDArray with shape [n, b, t, d].
        begin_states: a list of hidden states (list of hidden units with shape [n, b, d]) of RNNs.
        is_training: bool
        
        Returns
        -------
            outputs: the prediction, which is a NDArray with shape [n, b, t, d]
        '''
        ctx = label.context

        num_nodes, batch_size, seq_len, _ = label.shape 
        aux = label[:,:,:, self.output_dim:] # [n,b,t,d]
        label = label[:,:,:, :self.output_dim] # [n,b,t,d]
        
        go = nd.zeros(shape=(num_nodes, batch_size, self.input_dim), ctx=ctx)
        output, states = [], begin_states

        for i in range(seq_len):
            # get next input
            if i == 0: data = go
            else:
                prev = nd.concat(output[i - 1], aux[:,:,i - 1], dim=-1)
                truth = nd.concat(label[:,:,i - 1], aux[:,:,i - 1], dim=-1)
                if is_training and self.use_sampling: value = self.sampling()
                else: value = 0
                data = value * truth + (1 - value) * prev

            # unroll 1 step
            for depth, cell in enumerate(self.cells):
                data, states[depth] = cell.forward_single(feature, data, states[depth])
                if self.graphs[depth] is not None:
                    _data = data
                    for g in self.graphs[depth]:
                        _data = _data + g(data, feature)
                    data = _data

            # append feature to output
            _feature = nd.expand_dims(feature, axis=1) # [n, 1, d]
            _feature = nd.broadcast_to(_feature, shape=(0, batch_size, 0)) # [n, b, d]
            data = nd.concat(data, _feature, dim=-1) # [n, b, t, d]

            # proj output to prediction
            data = nd.reshape(data, shape=(num_nodes * batch_size, -1))
            data = self.proj(data)
            data = nd.reshape(data, shape=(num_nodes, batch_size, -1))
            
            output.append(data)

        output = nd.stack(*output, axis=2)
        return output 
Example #20
Source File: seq2seq.py    From ST-MetaNet with MIT License 4 votes vote down vote up
def forward(self, feature, label, begin_states, is_training):
        ''' Decode the hidden states to a temporal sequence.

        Parameters
        ----------
        feature: a NDArray with shape [n, d].
        label: a NDArray with shape [n, b, t, d].
        begin_states: a list of hidden states (list of hidden units with shape [n, b, d]) of RNNs.
        is_training: bool
        
        Returns
        -------
            outputs: the prediction, which is a NDArray with shape [n, b, t, d]
        '''
        ctx = label.context

        num_nodes, batch_size, seq_len, _ = label.shape 
        aux = label[:,:,:, self.output_dim:] # [n,b,t,d]
        label = label[:,:,:, :self.output_dim] # [n,b,t,d]
        
        go = nd.zeros(shape=(num_nodes, batch_size, self.input_dim), ctx=ctx)
        output, states = [], begin_states

        for i in range(seq_len):
            # get next input
            if i == 0: data = go
            else:
                prev = nd.concat(output[i - 1], aux[:,:,i - 1], dim=-1)
                truth = nd.concat(label[:,:,i - 1], aux[:,:,i - 1], dim=-1)
                if is_training and self.use_sampling: value = self.sampling()
                else: value = 0
                data = value * truth + (1 - value) * prev

            # unroll 1 step
            for depth, cell in enumerate(self.cells):
                data, states[depth] = cell.forward_single(feature, data, states[depth])
                if self.graphs[depth] is not None:
                    _data = 0
                    for g in self.graphs[depth]:
                        _data = _data + g(data, feature)
                    data = _data / len(self.graphs[depth])

            # append feature to output
            _feature = nd.expand_dims(feature, axis=1) # [n, 1, d]
            _feature = nd.broadcast_to(_feature, shape=(0, batch_size, 0)) # [n, b, d]
            data = nd.concat(data, _feature, dim=-1) # [n, b, t, d]

            # proj output to prediction
            data = nd.reshape(data, shape=(num_nodes * batch_size, -1))
            data = self.proj(data)
            data = nd.reshape(data, shape=(num_nodes, batch_size, -1))
            
            output.append(data)

        output = nd.stack(*output, axis=2)
        return output 
Example #21
Source File: image.py    From panoptic-fpn-gluon with Apache License 2.0 4 votes vote down vote up
def ten_crop(src, size):
    """Crop 10 regions from an array.
    This is performed same as:
    http://chainercv.readthedocs.io/en/stable/reference/transforms.html#ten-crop

    This method crops 10 regions. All regions will be in shape
    :obj`size`. These regions consist of 1 center crop and 4 corner
    crops and horizontal flips of them.
    The crops are ordered in this order.
    * center crop
    * top-left crop
    * bottom-left crop
    * top-right crop
    * bottom-right crop
    * center crop (flipped horizontally)
    * top-left crop (flipped horizontally)
    * bottom-left crop (flipped horizontally)
    * top-right crop (flipped horizontally)
    * bottom-right crop (flipped horizontally)

    Parameters
    ----------
    src : mxnet.nd.NDArray
        Input image.
    size : tuple
        Tuple of length 2, as (width, height) of the cropped areas.

    Returns
    -------
    mxnet.nd.NDArray
        The cropped images with shape (10, size[1], size[0], C)

    """
    h, w, _ = src.shape
    ow, oh = size

    if h < oh or w < ow:
        raise ValueError(
            "Cannot crop area {} from image with size ({}, {})".format(str(size), h, w))

    center = src[(h - oh) // 2:(h + oh) // 2, (w - ow) // 2:(w + ow) // 2, :]
    tl = src[0:oh, 0:ow, :]
    bl = src[h - oh:h, 0:ow, :]
    tr = src[0:oh, w - ow:w, :]
    br = src[h - oh:h, w - ow:w, :]
    crops = nd.stack(*[center, tl, bl, tr, br], axis=0)
    crops = nd.concat(*[crops, nd.flip(crops, axis=2)], dim=0)
    return crops 
Example #22
Source File: image.py    From MobileFace with MIT License 4 votes vote down vote up
def ten_crop(src, size):
    """Crop 10 regions from an array.
    This is performed same as:
    http://chainercv.readthedocs.io/en/stable/reference/transforms.html#ten-crop

    This method crops 10 regions. All regions will be in shape
    :obj`size`. These regions consist of 1 center crop and 4 corner
    crops and horizontal flips of them.
    The crops are ordered in this order.
    * center crop
    * top-left crop
    * bottom-left crop
    * top-right crop
    * bottom-right crop
    * center crop (flipped horizontally)
    * top-left crop (flipped horizontally)
    * bottom-left crop (flipped horizontally)
    * top-right crop (flipped horizontally)
    * bottom-right crop (flipped horizontally)

    Parameters
    ----------
    src : mxnet.nd.NDArray
        Input image.
    size : tuple
        Tuple of length 2, as (width, height) of the cropped areas.

    Returns
    -------
    mxnet.nd.NDArray
        The cropped images with shape (10, size[1], size[0], C)

    """
    h, w, _ = src.shape
    ow, oh = size

    if h < oh or w < ow:
        raise ValueError(
            "Cannot crop area {} from image with size ({}, {})".format(str(size), h, w))

    center = src[(h - oh) // 2:(h + oh) // 2, (w - ow) // 2:(w + ow) // 2, :]
    tl = src[0:oh, 0:ow, :]
    bl = src[h - oh:h, 0:ow, :]
    tr = src[0:oh, w - ow:w, :]
    br = src[h - oh:h, w - ow:w, :]
    crops = nd.stack(*[center, tl, bl, tr, br], axis=0)
    crops = nd.concat(*[crops, nd.flip(crops, axis=2)], dim=0)
    return crops 
Example #23
Source File: image.py    From gluon-cv with Apache License 2.0 4 votes vote down vote up
def ten_crop(src, size):
    """Crop 10 regions from an array.
    This is performed same as:
    http://chainercv.readthedocs.io/en/stable/reference/transforms.html#ten-crop

    This method crops 10 regions. All regions will be in shape
    :obj`size`. These regions consist of 1 center crop and 4 corner
    crops and horizontal flips of them.
    The crops are ordered in this order.
    * center crop
    * top-left crop
    * bottom-left crop
    * top-right crop
    * bottom-right crop
    * center crop (flipped horizontally)
    * top-left crop (flipped horizontally)
    * bottom-left crop (flipped horizontally)
    * top-right crop (flipped horizontally)
    * bottom-right crop (flipped horizontally)

    Parameters
    ----------
    src : mxnet.nd.NDArray
        Input image.
    size : tuple
        Tuple of length 2, as (width, height) of the cropped areas.

    Returns
    -------
    mxnet.nd.NDArray
        The cropped images with shape (10, size[1], size[0], C)

    """
    h, w, _ = src.shape
    ow, oh = size

    if h < oh or w < ow:
        raise ValueError(
            "Cannot crop area {} from image with size ({}, {})".format(str(size), h, w))

    center = src[(h - oh) // 2:(h + oh) // 2, (w - ow) // 2:(w + ow) // 2, :]
    tl = src[0:oh, 0:ow, :]
    bl = src[h - oh:h, 0:ow, :]
    tr = src[0:oh, w - ow:w, :]
    br = src[h - oh:h, w - ow:w, :]
    crops = nd.stack(*[center, tl, bl, tr, br], axis=0)
    crops = nd.concat(*[crops, nd.flip(crops, axis=2)], dim=0)
    return crops 
Example #24
Source File: hetero.py    From dgl with Apache License 2.0 4 votes vote down vote up
def get_aggregate_fn(agg):
    """Internal function to get the aggregation function for node data
    generated from different relations.

    Parameters
    ----------
    agg : str
        Method for aggregating node features generated by different relations.
        Allowed values are 'sum', 'max', 'min', 'mean', 'stack'.

    Returns
    -------
    callable
        Aggregator function that takes a list of tensors to aggregate
        and returns one aggregated tensor.
    """
    if agg == 'sum':
        fn = nd.sum
    elif agg == 'max':
        fn = nd.max
    elif agg == 'min':
        fn = nd.min
    elif agg == 'mean':
        fn = nd.mean
    elif agg == 'stack':
        fn = None  # will not be called
    else:
        raise DGLError('Invalid cross type aggregator. Must be one of '
                       '"sum", "max", "min", "mean" or "stack". But got "%s"' % agg)
    if agg == 'stack':
        def stack_agg(inputs, dsttype):  # pylint: disable=unused-argument
            if len(inputs) == 0:
                return None
            return nd.stack(*inputs, axis=1)
        return stack_agg
    else:
        def aggfn(inputs, dsttype):  # pylint: disable=unused-argument
            if len(inputs) == 0:
                return None
            stacked = nd.stack(*inputs, axis=0)
            return fn(stacked, axis=0)
        return aggfn