Python mxnet.nd.concatenate() Examples

The following are 13 code examples of mxnet.nd.concatenate(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module mxnet.nd , or try the search function .
Example #1
Source File: utils.py    From ya_mxdet with MIT License 6 votes vote down vote up
def bbox_transform(anchor, bbox):
    w = anchor[:, 2] - anchor[:, 0]
    h = anchor[:, 3] - anchor[:, 1]
    cx = (anchor[:, 0] + anchor[:, 2]) / 2.0
    cy = (anchor[:, 1] + anchor[:, 3]) / 2.0

    
    g_w = bbox[:, 2] - bbox[:, 0]
    g_h = bbox[:, 3] - bbox[:, 1]
    g_cx = (bbox[:, 0] + bbox[:, 2]) / 2.0
    g_cy = (bbox[:, 1] + bbox[:, 3]) / 2.0
    
    g_w = mx.ndarray.log(g_w / w)
    g_h = mx.ndarray.log(g_h / h)
    g_cx = (g_cx - cx) / w 
    g_cy = (g_cy - cy) / h
    return mx.ndarray.concatenate([
                g_w.reshape((-1, 1)), 
                g_h.reshape((-1, 1)), 
                g_cx.reshape((-1, 1)), 
                g_cy.reshape((-1, 1))], axis=1) 
Example #2
Source File: utils.py    From ya_mxdet with MIT License 6 votes vote down vote up
def bbox_inverse_transform(anchor, bbox):
    w = anchor[:, 2] - anchor[:, 0]
    h = anchor[:, 3] - anchor[:, 1]
    cx = (anchor[:, 0] + anchor[:, 2]) / 2.0
    cy = (anchor[:, 1] + anchor[:, 3]) / 2.0

    g_w = mx.ndarray.exp(bbox[:, 0]) * w
    g_h = mx.ndarray.exp(bbox[:, 1]) * h
    g_cx = bbox[:, 2] * w + cx
    g_cy = bbox[:, 3] * h + cy

    g_x1 = g_cx - g_w / 2
    g_y1 = g_cy - g_h / 2
    g_x2 = g_cx + g_w / 2
    g_y2 = g_cy + g_h / 2
    return mx.ndarray.concatenate([
                        g_x1.reshape((-1, 1)),
                        g_y1.reshape((-1, 1)),
                        g_x2.reshape((-1, 1)),
                        g_y2.reshape((-1, 1))], axis=1) 
Example #3
Source File: utils.py    From ya_mxdet with MIT License 6 votes vote down vote up
def bbox_overlaps(anchors:mx.nd.NDArray, gt:mx.nd.NDArray):
    """
    Get IoU of the anchors and ground truth bounding boxes.
    The shape of anchors and gt should be (N, 4) and (M, 4)
    So the shape of return value is (N, M)
    """
    ret = []
    for i in range(gt.shape[0]):
        cgt = gt[i].reshape((1, 4)).broadcast_to(anchors.shape)
        # inter
        x0 = nd.max(nd.stack(anchors[:,0], cgt[:,0]), axis=0)
        y0 = nd.max(nd.stack(anchors[:,1], cgt[:,1]), axis=0)
        x1 = nd.min(nd.stack(anchors[:,2], cgt[:,2]), axis=0)
        y1 = nd.min(nd.stack(anchors[:,3], cgt[:,3]), axis=0)
        
        inter = _get_area(nd.concatenate([x0.reshape((-1, 1)), 
                                         y0.reshape((-1, 1)), 
                                         x1.reshape((-1, 1)), 
                                         y1.reshape((-1, 1))], axis=1))
        outer = _get_area(anchors) + _get_area(cgt) - inter
        iou = inter / outer
        ret.append(iou.reshape((-1, 1)))
    ret=nd.concatenate(ret, axis=1)
    return ret 
Example #4
Source File: data.py    From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 5 votes vote down vote up
def sample_train_batch(self):
        """Sample a training batch (data and label)."""
        batch = []
        labels = []
        num_groups = self.batch_size // self.batch_k

        # For CUB200, we use the first 100 classes for training.
        sampled_classes = np.random.choice(100, num_groups, replace=False)
        for i in range(num_groups):
            img_fnames = np.random.choice(self.train_image_files[sampled_classes[i]],
                                          self.batch_k, replace=False)
            batch += [self.get_image(img_fname, is_train=True) for img_fname in img_fnames]
            labels += [sampled_classes[i] for _ in range(self.batch_k)]

        return nd.concatenate(batch, axis=0), labels 
Example #5
Source File: data.py    From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 5 votes vote down vote up
def get_test_batch(self):
        """Sample a testing batch (data and label)."""

        batch_size = self.batch_size
        batch = [self.get_image(self.test_image_files[(self.test_count*batch_size + i)
                                                      % len(self.test_image_files)],
                                is_train=False) for i in range(batch_size)]
        labels = [self.test_labels[(self.test_count*batch_size + i)
                                   % len(self.test_image_files)] for i in range(batch_size)]
        return nd.concatenate(batch, axis=0), labels 
Example #6
Source File: train.py    From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 5 votes vote down vote up
def test(ctx):
    """Test a model."""
    val_data.reset()
    outputs = []
    labels = []
    for batch in val_data:
        data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
        label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
        for x in data:
            outputs.append(net(x)[-1])
        labels += label

    outputs = nd.concatenate(outputs, axis=0)[:val_data.n_test]
    labels = nd.concatenate(labels, axis=0)[:val_data.n_test]
    return evaluate_emb(outputs, labels) 
Example #7
Source File: model.py    From YOLO with MIT License 5 votes vote down vote up
def predict(yolo:Yolo,x,threshold=0.5):
    """
    return label ,C,location
    :param yolo:
    :return:
    """
    assert  len(x)==1,"Only One image for now"
    ypre = yolo(x)
    label, preds, location = deal_output(ypre, yolo.s, b=yolo.b, c=yolo.class_num)
    indexs = []
    for i,c in enumerate(preds[0]):
        if c > threshold:
            indexs.append(i)
    class_names = []
    C_list  =[]
    bos_list = []
    for index in indexs:
        label_index = int(index / 2)
        location_offect = int(index % 2)
        class_index = nd.argmax(label[0][label_index], axis=0)
        C = preds[0][index]
        locat = location[0][label_index][location_offect]
        C_list.append(C.asscalar())
        #######traslate the name
        label_name = yolo.class_names
        text = label_name[int(class_index.asscalar()) ]
        class_names.append(text)
        ###traslate the locat
        x, y, w, h = locat
        w, h = nd.power(w, 2), nd.power(h, 2)
        ceil = 1 / 4
        row = int(label_index / 4)
        columns = label_index % 4
        x_center = columns * ceil + x
        y_center = row * ceil + y
        x_min, y_min, x_max, y_max = x_center - 0.5 * w, y_center - 0.5 * h, x_center + 0.5 * w, y_center + 0.5 * h
        box = nd.concatenate([x_min, y_min, x_max, y_max], axis=0) * 256
        bos_list.append(box.asnumpy())
        return class_names,C_list,bos_list 
Example #8
Source File: data.py    From training_results_v0.6 with Apache License 2.0 5 votes vote down vote up
def sample_train_batch(self):
        """Sample a training batch (data and label)."""
        batch = []
        labels = []
        num_groups = self.batch_size // self.batch_k

        # For CUB200, we use the first 100 classes for training.
        sampled_classes = np.random.choice(100, num_groups, replace=False)
        for i in range(num_groups):
            img_fnames = np.random.choice(self.train_image_files[sampled_classes[i]],
                                          self.batch_k, replace=False)
            batch += [self.get_image(img_fname, is_train=True) for img_fname in img_fnames]
            labels += [sampled_classes[i] for _ in range(self.batch_k)]

        return nd.concatenate(batch, axis=0), labels 
Example #9
Source File: data.py    From training_results_v0.6 with Apache License 2.0 5 votes vote down vote up
def get_test_batch(self):
        """Sample a testing batch (data and label)."""

        batch_size = self.batch_size
        batch = [self.get_image(self.test_image_files[(self.test_count*batch_size + i)
                                                      % len(self.test_image_files)],
                                is_train=False) for i in range(batch_size)]
        labels = [self.test_labels[(self.test_count*batch_size + i)
                                   % len(self.test_image_files)] for i in range(batch_size)]
        return nd.concatenate(batch, axis=0), labels 
Example #10
Source File: train.py    From training_results_v0.6 with Apache License 2.0 5 votes vote down vote up
def test(ctx):
    """Test a model."""
    val_data.reset()
    outputs = []
    labels = []
    for batch in val_data:
        data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
        label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
        for x in data:
            outputs.append(net(x)[-1])
        labels += label

    outputs = nd.concatenate(outputs, axis=0)[:val_data.n_test]
    labels = nd.concatenate(labels, axis=0)[:val_data.n_test]
    return evaluate_emb(outputs, labels) 
Example #11
Source File: data.py    From SNIPER-mxnet with Apache License 2.0 5 votes vote down vote up
def sample_train_batch(self):
        """Sample a training batch (data and label)."""
        batch = []
        labels = []
        num_groups = self.batch_size // self.batch_k

        # For CUB200, we use the first 100 classes for training.
        sampled_classes = np.random.choice(100, num_groups, replace=False)
        for i in range(num_groups):
            img_fnames = np.random.choice(self.train_image_files[sampled_classes[i]],
                                          self.batch_k, replace=False)
            batch += [self.get_image(img_fname, is_train=True) for img_fname in img_fnames]
            labels += [sampled_classes[i] for _ in range(self.batch_k)]

        return nd.concatenate(batch, axis=0), labels 
Example #12
Source File: data.py    From SNIPER-mxnet with Apache License 2.0 5 votes vote down vote up
def get_test_batch(self):
        """Sample a testing batch (data and label)."""

        batch_size = self.batch_size
        batch = [self.get_image(self.test_image_files[(self.test_count*batch_size + i)
                                                      % len(self.test_image_files)],
                                is_train=False) for i in range(batch_size)]
        labels = [self.test_labels[(self.test_count*batch_size + i)
                                   % len(self.test_image_files)] for i in range(batch_size)]
        return nd.concatenate(batch, axis=0), labels 
Example #13
Source File: train.py    From SNIPER-mxnet with Apache License 2.0 5 votes vote down vote up
def test(ctx):
    """Test a model."""
    val_data.reset()
    outputs = []
    labels = []
    for batch in val_data:
        data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
        label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
        for x in data:
            outputs.append(net(x)[-1])
        labels += label

    outputs = nd.concatenate(outputs, axis=0)[:val_data.n_test]
    labels = nd.concatenate(labels, axis=0)[:val_data.n_test]
    return evaluate_emb(outputs, labels)