Python mxnet.nd.transpose() Examples
The following are 30
code examples of mxnet.nd.transpose().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mxnet.nd
, or try the search function
.
Example #1
Source File: utils_final.py From InsightFace_TF with MIT License | 6 votes |
def load_data_mnist(batch_size, resize=None, root="~/.mxnet/datasets/mnist"): """download the fashion mnist dataest and then load into memory""" def transform_mnist(data, label): # Transform a batch of examples. if resize: n = data.shape[0] new_data = nd.zeros((n, resize, resize, data.shape[3])) for i in range(n): new_data[i] = image.imresize(data[i], resize, resize) data = new_data # change data from batch x height x width x channel to batch x channel x height x width return nd.transpose(data.astype('float32'), (0, 3, 1, 2)) / 255, label.astype('float32') mnist_train = gluon.data.vision.MNIST(root=root, train=True, transform=None) mnist_test = gluon.data.vision.MNIST(root=root, train=False, transform=None) # Transform later to avoid memory explosion. train_data = DataLoader(mnist_train, batch_size, shuffle=True, transform=transform_mnist) test_data = DataLoader(mnist_test, batch_size, shuffle=False, transform=transform_mnist) return (train_data, test_data)
Example #2
Source File: train_imagenet.py From ResidualAttentionNetwork with MIT License | 6 votes |
def transformer(data, label): jitter_param = 0.4 lighting_param = 0.1 im = data auglist = image.CreateAugmenter(data_shape=(3, 224, 224), rand_crop=True, rand_resize=True, rand_mirror=True, brightness=jitter_param, saturation=jitter_param, contrast=jitter_param, pca_noise=lighting_param, mean=True, std=True) for aug in auglist: im = aug(im) im = nd.transpose(im, (2, 0, 1)) return im, label
Example #3
Source File: net.py From comment_toxic_CapsuleNet with MIT License | 6 votes |
def net_define_eu(): net = nn.Sequential() with net.name_scope(): net.add(nn.Embedding(config.MAX_WORDS, config.EMBEDDING_DIM)) net.add(rnn.GRU(128,layout='NTC',bidirectional=True, num_layers=1, dropout=0.2)) net.add(transpose(axes=(0,2,1))) net.add(nn.GlobalMaxPool1D()) ''' net.add(FeatureBlock1()) ''' net.add(extendDim(axes=3)) net.add(PrimeConvCap(16, 32, kernel_size=(1,1), padding=(0,0),strides=(1,1))) net.add(CapFullyNGBlock(16, num_cap=12, input_units=32, units=16, route_num=3)) net.add(nn.Dropout(0.2)) net.add(nn.Dense(6, activation='sigmoid')) net.initialize(init=init.Xavier()) return net
Example #4
Source File: net.py From comment_toxic_CapsuleNet with MIT License | 6 votes |
def net_define(): net = nn.Sequential() with net.name_scope(): net.add(nn.Embedding(config.MAX_WORDS, config.EMBEDDING_DIM)) net.add(rnn.GRU(128,layout='NTC',bidirectional=True, num_layers=2, dropout=0.2)) net.add(transpose(axes=(0,2,1))) # net.add(nn.MaxPool2D(pool_size=(config.MAX_LENGTH,1))) # net.add(nn.Conv2D(128, kernel_size=(101,1), padding=(50,0), groups=128,activation='relu')) net.add(PrimeConvCap(8,32, kernel_size=(1,1), padding=(0,0))) # net.add(AdvConvCap(8,32,8,32, kernel_size=(1,1), padding=(0,0))) net.add(CapFullyBlock(8*(config.MAX_LENGTH)/2, num_cap=12, input_units=32, units=16, route_num=5)) # net.add(CapFullyBlock(8*(config.MAX_LENGTH-8), num_cap=12, input_units=32, units=16, route_num=5)) # net.add(CapFullyBlock(8, num_cap=12, input_units=32, units=16, route_num=5)) net.add(nn.Dropout(0.2)) # net.add(LengthBlock()) net.add(nn.Dense(6, activation='sigmoid')) net.initialize(init=init.Xavier()) return net
Example #5
Source File: net.py From comment_toxic_CapsuleNet with MIT License | 6 votes |
def forward(self, x): x_t = nd.transpose(x, axes=(0,2,1)) conv3_out = self.conv3(x_t) conv5_out = self.conv5(conv3_out) + conv3_out conv7_out = self.conv7(conv5_out) + conv5_out # conv_out = nd.concat(*[conv3_out, conv5_out, conv7_out], dim=1) conv_out = self.conv_drop(conv7_out) conv_max_pooled = self.conv_maxpool(conv_out) gru_out = self.gru(x) gru_out_t = nd.transpose(gru_out, axes=(0,2,1)) # gru_pooled = nd.transpose(gru_out, axes=(0,2,1)) # gru_maxpooled = self.gru_post_max(gru_out_t) # return gru_maxpooled # gru_avepooled = self.gru_post_ave(gru_out_t) # gru_pooled = nd.concat(*[gru_maxpooled, gru_avepooled], dim=1) # gru_pooled = nd.concat(*[gru_maxpooled, gru_avepooled], dim=1) gru_maxpooled = self.gru_maxpool(gru_out_t) # gru_avepooled = self.gru_maxpool(gru_out_t) # gru_pooled = nd.concat(*[gru_maxpooled, gru_avepooled], dim=1) # conv_ave_pooled = self.conv_avepool(conv_out) concated_feature = nd.concat(*[gru_maxpooled, conv_max_pooled], dim=1) return concated_feature
Example #6
Source File: utils.py From EmotionClassifier with GNU General Public License v3.0 | 6 votes |
def load_data_fashion_mnist(batch_size, resize=None, root="~/.mxnet/datasets/fashion-mnist"): """download the fashion mnist dataest and then load into memory""" def transform_mnist(data, label): # Transform a batch of examples. if resize: n = data.shape[0] new_data = nd.zeros((n, resize, resize, data.shape[3])) for i in range(n): new_data[i] = image.imresize(data[i], resize, resize) data = new_data # change data from batch x height x width x channel to batch x channel x height x width return nd.transpose(data.astype('float32'), (0,3,1,2))/255, label.astype('float32') mnist_train = gluon.data.vision.FashionMNIST(root=root, train=True, transform=None) mnist_test = gluon.data.vision.FashionMNIST(root=root, train=False, transform=None) # Transform later to avoid memory explosion. train_data = DataLoader(mnist_train, batch_size, shuffle=True, transform=transform_mnist) test_data = DataLoader(mnist_test, batch_size, shuffle=False, transform=transform_mnist) return (train_data, test_data)
Example #7
Source File: utils_final.py From InsightFace_TF with MIT License | 6 votes |
def load_data_fashion_mnist(batch_size, resize=None, root="~/.mxnet/datasets/fashion-mnist"): """download the fashion mnist dataest and then load into memory""" def transform_mnist(data, label): # Transform a batch of examples. if resize: n = data.shape[0] new_data = nd.zeros((n, resize, resize, data.shape[3])) for i in range(n): new_data[i] = image.imresize(data[i], resize, resize) data = new_data # change data from batch x height x width x channel to batch x channel x height x width return nd.transpose(data.astype('float32'), (0, 3, 1, 2)) / 255, label.astype('float32') mnist_train = gluon.data.vision.FashionMNIST(root=root, train=True, transform=None) mnist_test = gluon.data.vision.FashionMNIST(root=root, train=False, transform=None) # Transform later to avoid memory explosion. train_data = DataLoader(mnist_train, batch_size, shuffle=True, transform=transform_mnist) test_data = DataLoader(mnist_test, batch_size, shuffle=False, transform=transform_mnist) return (train_data, test_data)
Example #8
Source File: siamrpn_tracker.py From gluon-cv with Apache License 2.0 | 6 votes |
def _convert_score(self, score): """from cls to score Parameters ---------- score : ndarray network output Returns ------- get feature map score though softmax """ score = nd.transpose(score, axes=(1, 2, 3, 0)) score = nd.reshape(score, shape=(2, -1)) score = nd.transpose(score, axes=(1, 0)) score = nd.softmax(score, axis=1) score = nd.slice_axis(score, axis=1, begin=1, end=2) score = nd.squeeze(score, axis=1) return score.asnumpy()
Example #9
Source File: siamrpn_tracker.py From gluon-cv with Apache License 2.0 | 6 votes |
def _convert_bbox(self, delta, anchor): """from loc to predict postion Parameters ---------- delta : ndarray or np.ndarray network output anchor : np.ndarray generate anchor location Returns ------- rejust predict postion though Anchor """ delta = nd.transpose(delta, axes=(1, 2, 3, 0)) delta = nd.reshape(delta, shape=(4, -1)) delta = delta.asnumpy() delta[0, :] = delta[0, :] * anchor[:, 2] + anchor[:, 0] delta[1, :] = delta[1, :] * anchor[:, 3] + anchor[:, 1] delta[2, :] = np.exp(delta[2, :]) * anchor[:, 2] delta[3, :] = np.exp(delta[3, :]) * anchor[:, 3] return delta
Example #10
Source File: utils.py From CapsNet_Mxnet with Apache License 2.0 | 6 votes |
def load_data_fashion_mnist(batch_size, resize=None): """download the fashion mnist dataest and then load into memory""" def transform_mnist(data, label): if resize: # resize to resize x resize data = image.imresize(data, resize, resize) # change data from height x weight x channel to channel x height x weight return nd.transpose(data.astype('float32'), (2,0,1))/255, label.astype('float32') mnist_train = gluon.data.vision.FashionMNIST(root='./data', train=True, transform=transform_mnist) mnist_test = gluon.data.vision.FashionMNIST(root='./data', train=False, transform=transform_mnist) train_data = gluon.data.DataLoader( mnist_train, batch_size, shuffle=True) test_data = gluon.data.DataLoader( mnist_test, batch_size, shuffle=False) return (train_data, test_data)
Example #11
Source File: E2FAR.py From mxnet-E2FAR with Apache License 2.0 | 6 votes |
def __getitem__(self, idx): img_path = self.data_frame.iloc[idx, 0] img = cv2.imread(img_path, 1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) x, y, w, h = self.data_frame.iloc[idx, 1:5] l, t, ww, hh = enlarge_bbox(x, y, w, h, self.enlarge_factor) r, b = l + ww, t + hh img = img[t: b, l:r, :] img = cv2.resize(img, (self.img_size, self.img_size)) img = img.astype(np.float32) - 127.5 img = nd.transpose(nd.array(img), (2, 0, 1)) label_path = img_path.replace('.jpg', '.mat') label = sio.loadmat(label_path) params_shape = label['Shape_Para'].astype(np.float32).ravel() params_exp = label['Exp_Para'].astype(np.float32).ravel() return img, params_shape, params_exp
Example #12
Source File: TextEXAM_multi-label.py From AAAI_2019_EXAM with GNU General Public License v2.0 | 6 votes |
def forward(self,x): """ return shape:(batch_size,2000,2) """ # Encode layer question = x[:,0:30] question = self.Embed(question) question = self.gru(question) #interaction layer interaction = nd.dot(question,self.topic_embedding.data()) interaction = nd.transpose(interaction,axes=(0,2,1)) interaction = interaction.reshape((batch_size*2000,-1)) # interaction = interaction.expand_dims(axis=1) # print("interaction done") #agg layer # interaction = self.pooling(self.conv_2(self.conv_1(interaction))) # print("agg done") res = self.mlp_2(self.mlp_1(interaction)) res = res.reshape((batch_size,2000)) return res #Train Model
Example #13
Source File: utils.py From CapsNet_Mxnet with Apache License 2.0 | 6 votes |
def load_data_mnist(batch_size, resize=None): """download the fashion mnist dataest and then load into memory""" def transform_mnist(data, label): if resize: # resize to resize x resize data = image.imresize(data, resize, resize) # change data from height x weight x channel to channel x height x weight return nd.transpose(data.astype('float32'), (2,0,1))/255, label.astype('float32') mnist_train = gluon.data.vision.MNIST(root='./data', train=True, transform=transform_mnist) mnist_test = gluon.data.vision.MNIST(root='./data', train=False, transform=transform_mnist) train_data = gluon.data.DataLoader( mnist_train, batch_size, shuffle=True) test_data = gluon.data.DataLoader( mnist_test, batch_size, shuffle=False) return (train_data, test_data)
Example #14
Source File: gen_submission.py From ResidualAttentionNetwork with MIT License | 5 votes |
def trans_test(data): im = data.astype(np.float32) / 255. auglist = image.CreateAugmenter(data_shape=(3, 32, 32), mean=mx.nd.array([0.485, 0.456, 0.406]), std=mx.nd.array([0.229, 0.224, 0.225])) for aug in auglist: im = aug(im) im = nd.transpose(im, (2, 0, 1)) return im
Example #15
Source File: learn_nms.py From Relation-Networks-for-Object-Detection with MIT License | 5 votes |
def extract_multi_position_matrix_nd(bbox): bbox = nd.transpose(bbox, axes=(1, 0, 2)) xmin, ymin, xmax, ymax = nd.split(data=bbox, num_outputs=4, axis=2) # [num_fg_classes, num_boxes, 1] bbox_width = xmax - xmin + 1. bbox_height = ymax - ymin + 1. center_x = 0.5 * (xmin + xmax) center_y = 0.5 * (ymin + ymax) # [num_fg_classes, num_boxes, num_boxes] delta_x = nd.broadcast_minus(lhs=center_x, rhs=nd.transpose(center_x, axes=(0, 2, 1))) delta_x = nd.broadcast_div(delta_x, bbox_width) delta_x = nd.log(nd.maximum(nd.abs(delta_x), 1e-3)) delta_y = nd.broadcast_minus(lhs=center_y, rhs=nd.transpose(center_y, axes=(0, 2, 1))) delta_y = nd.broadcast_div(delta_y, bbox_height) delta_y = nd.log(nd.maximum(nd.abs(delta_y), 1e-3)) delta_width = nd.broadcast_div(lhs=bbox_width, rhs=nd.transpose(bbox_width, axes=(0, 2, 1))) delta_width = nd.log(delta_width) delta_height = nd.broadcast_div(lhs=bbox_height, rhs=nd.transpose(bbox_height, axes=(0, 2, 1))) delta_height = nd.log(delta_height) concat_list = [delta_x, delta_y, delta_width, delta_height] for idx, sym in enumerate(concat_list): concat_list[idx] = nd.expand_dims(sym, axis=3) position_matrix = nd.concat(*concat_list, dim=3) return position_matrix
Example #16
Source File: utils.py From gluon-face with MIT License | 5 votes |
def transform_train(data, label): im = data.astype('float32') / 255 - 0.5 im = nd.transpose(im, (2, 0, 1)) return im, label
Example #17
Source File: utils.py From gluon-face with MIT License | 5 votes |
def transform_val(data, label): im = data.astype('float32') / 255 - 0.5 im = nd.transpose(im, (2, 0, 1)) return im, label
Example #18
Source File: test_script.py From gluon-face with MIT License | 5 votes |
def transform_test_flip(data, isf=False): flip_data = nd.flip(data, axis=1) if isf: data = nd.transpose(data, (2, 0, 1)).astype('float32') flip_data = nd.transpose(flip_data, (2, 0, 1)).astype('float32') return data, flip_data return transform_test(data), transform_test(flip_data)
Example #19
Source File: seq2seq.py From ST-MetaNet with MIT License | 5 votes |
def forward(self, feature, data, label, is_training): """ Forward the seq2seq network. Parameters ---------- feature: NDArray with shape [b, n, d]. The features of each node. data: NDArray with shape [b, t, n, d]. The flow readings. label: NDArray with shape [b, t, n, d]. The flow labels. is_training: bool. Returns ------- loss: loss for gradient descent. (pred, label): each of them is a NDArray with shape [n, b, t, d]. """ data = nd.transpose(data, axes=(2, 0, 1, 3)) # [n, b, t, d] label = nd.transpose(label, axes=(2, 0, 1, 3)) # [n, b, t, d] # geo-feature embedding (NMK Learner) feature = self.geo_encoder(nd.mean(feature, axis=0)) # shape=[n, d] # seq2seq encoding process states = self.encoder(feature, data) # seq2seq decoding process output = self.decoder(feature, label, states, is_training) # [n, b, t, d] # loss calculation label = label[:,:,:,:self.decoder.output_dim] # loss = nd.mean((output - label) ** 2, axis=1, exclude=True) loss = nd.mean(nd.abs(output - label), axis=1, exclude=True) return loss, [output, label]
Example #20
Source File: train_imagenet.py From ResidualAttentionNetwork with MIT License | 5 votes |
def trans_test(data, label): im = data auglist = image.CreateAugmenter(data_shape=(3, 224, 224), resize=256, mean=True, std=True) for aug in auglist: im = aug(im) im = nd.transpose(im, (2, 0, 1)) return im, label
Example #21
Source File: train_cifar.py From ResidualAttentionNetwork with MIT License | 5 votes |
def transformer(data, label): im = data.asnumpy() im = np.pad(im, pad_width=((4, 4), (4, 4), (0, 0)), mode='constant') im = random_eraser(im) im = nd.array(im) / 255. auglist = image.CreateAugmenter(data_shape=(3, 32, 32), rand_crop=True, rand_mirror=True, mean=mx.nd.array([0.4914, 0.4824, 0.4467]), std=mx.nd.array([0.2471, 0.2435, 0.2616])) for aug in auglist: im = aug(im) im = nd.transpose(im, (2, 0, 1)) return im, label
Example #22
Source File: train_cifar.py From ResidualAttentionNetwork with MIT License | 5 votes |
def trans_test(data, label): im = data.astype(np.float32) / 255. auglist = image.CreateAugmenter(data_shape=(3, 32, 32), mean=mx.nd.array([0.4914, 0.4824, 0.4467]), std=mx.nd.array([0.2471, 0.2435, 0.2616])) for aug in auglist: im = aug(im) im = nd.transpose(im, (2, 0, 1)) return im, label
Example #23
Source File: data.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def transform(data, target_wd, target_ht, is_train, box): """Crop and normnalize an image nd array.""" if box is not None: x, y, w, h = box data = data[y:min(y+h, data.shape[0]), x:min(x+w, data.shape[1])] # Resize to target_wd * target_ht. data = mx.image.imresize(data, target_wd, target_ht) # Normalize in the same way as the pre-trained model. data = data.astype(np.float32) / 255.0 data = (data - mx.nd.array([0.485, 0.456, 0.406])) / mx.nd.array([0.229, 0.224, 0.225]) if is_train: if random.random() < 0.5: data = nd.flip(data, axis=1) data, _ = mx.image.random_crop(data, (224, 224)) else: data, _ = mx.image.center_crop(data, (224, 224)) # Transpose from (target_wd, target_ht, 3) # to (3, target_wd, target_ht). data = nd.transpose(data, (2, 0, 1)) # If image is greyscale, repeat 3 times to get RGB image. if data.shape[0] == 1: data = nd.tile(data, (3, 1, 1)) return data.reshape((1,) + data.shape)
Example #24
Source File: target.py From cascade_rcnn_gluon with Apache License 2.0 | 5 votes |
def forward(self, anchors, cls_preds, gt_boxes, gt_ids): """Generate training targets.""" anchors = self._center_to_corner(anchors.reshape((-1, 4))) ious = nd.transpose(nd.contrib.box_iou(anchors, gt_boxes), (1, 0, 2)) matches = self._matcher(ious) if self._use_negative_sampling: samples = self._sampler(matches, cls_preds, ious) else: samples = self._sampler(matches) cls_targets = self._cls_encoder(samples, matches, gt_ids) box_targets, box_masks = self._box_encoder(samples, matches, anchors, gt_boxes) return cls_targets, box_targets, box_masks
Example #25
Source File: get_data.py From EmotionClassifier with GNU General Public License v3.0 | 5 votes |
def transform(data): data = nd.array(data) # 部分数据增强接受`float32` data = nd.transpose(data, (2,0,1)) # 改变维度顺序为(c, w, h) data = image_augmentaion(data) data = random_mask(data, 32, n_chanel= 1,flag=1) # 执行random_mask, 随机遮盖 return data
Example #26
Source File: cifar10_dist.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def transform(data, label): return nd.transpose(data.astype(np.float32), (2,0,1))/255, label.astype(np.float32)
Example #27
Source File: tensor_utils.py From mxnet-centernet with MIT License | 5 votes |
def symbolic_transpose_and_gather_feat(F, feat, ind, K, batch, cat, attri): #print("In symbolic_transpose_and_gather_feat, feat.shape = ", feat.shape) feat = F.transpose(feat, axes=(0, 2, 3, 1)) feat = F.reshape(feat, shape=(batch, -1, cat)) #print("In symbolic_transpose_and_gather_feat, feat.shape = ", feat.shape) feat = symbolic_gather_feat(F, feat, ind, K, attri) return feat
Example #28
Source File: data.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def transform(data, target_wd, target_ht, is_train, box): """Crop and normnalize an image nd array.""" if box is not None: x, y, w, h = box data = data[y:min(y+h, data.shape[0]), x:min(x+w, data.shape[1])] # Resize to target_wd * target_ht. data = mx.image.imresize(data, target_wd, target_ht) # Normalize in the same way as the pre-trained model. data = data.astype(np.float32) / 255.0 data = (data - mx.nd.array([0.485, 0.456, 0.406])) / mx.nd.array([0.229, 0.224, 0.225]) if is_train: if random.random() < 0.5: data = nd.flip(data, axis=1) data, _ = mx.image.random_crop(data, (224, 224)) else: data, _ = mx.image.center_crop(data, (224, 224)) # Transpose from (target_wd, target_ht, 3) # to (3, target_wd, target_ht). data = nd.transpose(data, (2, 0, 1)) # If image is greyscale, repeat 3 times to get RGB image. if data.shape[0] == 1: data = nd.tile(data, (3, 1, 1)) return data.reshape((1,) + data.shape)
Example #29
Source File: TextEXAM_multi-label.py From AAAI_2019_EXAM with GNU General Public License v2.0 | 5 votes |
def batch_attention(encoder,decoder): attention = nd.softmax(nd.batch_dot(encoder,nd.transpose(decoder,axes = (0,2,1))),axis=1) new_decoder = nd.batch_dot(attention,nd.transpose(encoder,axes=(0,1,2))) return new_decoder
Example #30
Source File: target.py From gluon-cv with Apache License 2.0 | 5 votes |
def forward(self, anchors, cls_preds, gt_boxes, gt_ids): """Generate training targets.""" anchors = self._center_to_corner(anchors.reshape((-1, 4))) ious = nd.transpose(nd.contrib.box_iou(anchors, gt_boxes), (1, 0, 2)) matches = self._matcher(ious) if self._use_negative_sampling: samples = self._sampler(matches, cls_preds, ious) else: samples = self._sampler(matches) cls_targets = self._cls_encoder(samples, matches, gt_ids) box_targets, box_masks = self._box_encoder(samples, matches, anchors, gt_boxes) return cls_targets, box_targets, box_masks