Python tensorflow.python.ops.nn_ops.softmax_cross_entropy_with_logits() Examples
The following are 10
code examples of tensorflow.python.ops.nn_ops.softmax_cross_entropy_with_logits().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.nn_ops
, or try the search function
.
Example #1
Source File: onehot_categorical.py From lambda-packs with MIT License | 6 votes |
def _log_prob(self, x): x = self._assert_valid_sample(x) # broadcast logits or x if need be. logits = self.logits if (not x.get_shape().is_fully_defined() or not logits.get_shape().is_fully_defined() or x.get_shape() != logits.get_shape()): logits = array_ops.ones_like(x, dtype=logits.dtype) * logits x = array_ops.ones_like(logits, dtype=x.dtype) * x logits_shape = array_ops.shape(math_ops.reduce_sum(logits, -1)) logits_2d = array_ops.reshape(logits, [-1, self.event_size]) x_2d = array_ops.reshape(x, [-1, self.event_size]) ret = -nn_ops.softmax_cross_entropy_with_logits(labels=x_2d, logits=logits_2d) # Reshape back to user-supplied batch and sample dims prior to 2D reshape. ret = array_ops.reshape(ret, logits_shape) return ret
Example #2
Source File: onehot_categorical.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _log_prob(self, x): x = ops.convert_to_tensor(x, name="x") # broadcast logits or x if need be. logits = self.logits if (not x.get_shape().is_fully_defined() or not logits.get_shape().is_fully_defined() or x.get_shape() != logits.get_shape()): logits = array_ops.ones_like(x, dtype=logits.dtype) * logits x = array_ops.ones_like(logits, dtype=x.dtype) * x logits_shape = array_ops.shape(logits) if logits.get_shape().ndims == 2: logits_2d = logits x_2d = x else: logits_2d = array_ops.reshape(logits, [-1, self.num_classes]) x_2d = array_ops.reshape(x, [-1, self.num_classes]) ret = -nn_ops.softmax_cross_entropy_with_logits(labels=x_2d, logits=logits_2d) ret = array_ops.reshape(ret, logits_shape) return ret
Example #3
Source File: nn_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_binary_ops(self): ops = [ ('sigmoid_cross_entropy_with_logits', nn_impl.sigmoid_cross_entropy_with_logits, nn.sigmoid_cross_entropy_with_logits), ('softmax_cross_entropy_with_logits', nn_ops.softmax_cross_entropy_with_logits, nn.softmax_cross_entropy_with_logits), ('sparse_softmax_cross_entropy_with_logits', nn_ops.sparse_softmax_cross_entropy_with_logits, nn.sparse_softmax_cross_entropy_with_logits), ] for op_name, tf_op, lt_op in ops: golden_tensor = tf_op(self.original_lt.tensor, self.other_lt.tensor) golden_lt = core.LabeledTensor(golden_tensor, self.axes) actual_lt = lt_op(self.original_lt, self.other_lt) self.assertIn(op_name, actual_lt.name) self.assertLabeledTensorsEqual(golden_lt, actual_lt)
Example #4
Source File: onehot_categorical.py From keras-lambda with MIT License | 6 votes |
def _log_prob(self, x): x = ops.convert_to_tensor(x, name="x") # broadcast logits or x if need be. logits = self.logits if (not x.get_shape().is_fully_defined() or not logits.get_shape().is_fully_defined() or x.get_shape() != logits.get_shape()): logits = array_ops.ones_like(x, dtype=logits.dtype) * logits x = array_ops.ones_like(logits, dtype=x.dtype) * x logits_shape = array_ops.shape(logits) if logits.get_shape().ndims == 2: logits_2d = logits x_2d = x else: logits_2d = array_ops.reshape(logits, [-1, self.num_classes]) x_2d = array_ops.reshape(x, [-1, self.num_classes]) ret = -nn_ops.softmax_cross_entropy_with_logits(labels=x_2d, logits=logits_2d) ret = array_ops.reshape(ret, logits_shape) return ret
Example #5
Source File: nn_test.py From keras-lambda with MIT License | 6 votes |
def test_binary_ops(self): ops = [ ('sigmoid_cross_entropy_with_logits', nn_impl.sigmoid_cross_entropy_with_logits, nn.sigmoid_cross_entropy_with_logits), ('softmax_cross_entropy_with_logits', nn_ops.softmax_cross_entropy_with_logits, nn.softmax_cross_entropy_with_logits), ('sparse_softmax_cross_entropy_with_logits', nn_ops.sparse_softmax_cross_entropy_with_logits, nn.sparse_softmax_cross_entropy_with_logits), ] for op_name, tf_op, lt_op in ops: golden_tensor = tf_op(self.original_lt.tensor, self.other_lt.tensor) golden_lt = core.LabeledTensor(golden_tensor, self.axes) actual_lt = lt_op(self.original_lt, self.other_lt) self.assertIn(op_name, actual_lt.name) self.assertLabeledTensorsEqual(golden_lt, actual_lt)
Example #6
Source File: onehot_categorical.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _entropy(self): if self.logits.get_shape().ndims == 2: logits_2d = self.logits else: logits_2d = array_ops.reshape(self.logits, [-1, self.num_classes]) histogram_2d = nn_ops.softmax(logits_2d) ret = array_ops.reshape( nn_ops.softmax_cross_entropy_with_logits(labels=histogram_2d, logits=logits_2d), self.batch_shape()) ret.set_shape(self.get_batch_shape()) return ret
Example #7
Source File: categorical.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _entropy(self): if self.logits.get_shape().ndims == 2: logits_2d = self.logits else: logits_2d = array_ops.reshape(self.logits, [-1, self.num_classes]) histogram_2d = nn_ops.softmax(logits_2d) ret = array_ops.reshape( nn_ops.softmax_cross_entropy_with_logits(labels=histogram_2d, logits=logits_2d), self.batch_shape()) ret.set_shape(self.get_batch_shape()) return ret
Example #8
Source File: categorical.py From deep_image_model with Apache License 2.0 | 5 votes |
def _entropy(self): if self.logits.get_shape().ndims == 2: logits_2d = self.logits else: logits_2d = array_ops.reshape(self.logits, [-1, self.num_classes]) histogram_2d = nn_ops.softmax(logits_2d) ret = array_ops.reshape( nn_ops.softmax_cross_entropy_with_logits(logits_2d, histogram_2d), self.batch_shape()) ret.set_shape(self.get_batch_shape()) return ret
Example #9
Source File: onehot_categorical.py From keras-lambda with MIT License | 5 votes |
def _entropy(self): if self.logits.get_shape().ndims == 2: logits_2d = self.logits else: logits_2d = array_ops.reshape(self.logits, [-1, self.num_classes]) histogram_2d = nn_ops.softmax(logits_2d) ret = array_ops.reshape( nn_ops.softmax_cross_entropy_with_logits(labels=histogram_2d, logits=logits_2d), self.batch_shape()) ret.set_shape(self.get_batch_shape()) return ret
Example #10
Source File: categorical.py From keras-lambda with MIT License | 5 votes |
def _entropy(self): if self.logits.get_shape().ndims == 2: logits_2d = self.logits else: logits_2d = array_ops.reshape(self.logits, [-1, self.num_classes]) histogram_2d = nn_ops.softmax(logits_2d) ret = array_ops.reshape( nn_ops.softmax_cross_entropy_with_logits(labels=histogram_2d, logits=logits_2d), self.batch_shape()) ret.set_shape(self.get_batch_shape()) return ret