Python mmdet.core.bbox_mapping_back() Examples
The following are 8
code examples of mmdet.core.bbox_mapping_back().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mmdet.core
, or try the search function
.
Example #1
Source File: reppoints_detector.py From RepPoints with MIT License | 6 votes |
def merge_aug_results(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores
Example #2
Source File: reppoints_detector.py From kaggle-kuzushiji-recognition with MIT License | 6 votes |
def merge_aug_results(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores
Example #3
Source File: reppoints_detector.py From RDSNet with Apache License 2.0 | 6 votes |
def merge_aug_results(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores
Example #4
Source File: reppoints_detector.py From IoU-Uniform-R-CNN with Apache License 2.0 | 6 votes |
def merge_aug_results(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores
Example #5
Source File: reppoints_detector.py From Cascade-RPN with Apache License 2.0 | 6 votes |
def merge_aug_results(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores
Example #6
Source File: reppoints_detector.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 6 votes |
def merge_aug_results(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores
Example #7
Source File: reppoints_detector.py From ttfnet with Apache License 2.0 | 6 votes |
def merge_aug_results(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores
Example #8
Source File: reppoints_detector.py From mmdetection with Apache License 2.0 | 5 votes |
def merge_aug_results(self, aug_bboxes, aug_scores, img_metas): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] flip_direction = img_info[0]['flip_direction'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip, flip_direction) recovered_bboxes.append(bboxes) bboxes = torch.cat(recovered_bboxes, dim=0) if aug_scores is None: return bboxes else: scores = torch.cat(aug_scores, dim=0) return bboxes, scores