Python mmdet.core.bbox_mapping() Examples
The following are 21
code examples of mmdet.core.bbox_mapping().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mmdet.core
, or try the search function
.
Example #1
Source File: rpn.py From mmdetection with Apache License 2.0 | 6 votes |
def aug_test(self, imgs, img_metas, rescale=False): """Test function with test time augmentation. Args: imgs (list[torch.Tensor]): List of multiple images img_metas (list[dict]): List of image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: np.ndarray: proposals """ proposal_list = self.rpn_head.aug_test_rpn( self.extract_feats(imgs), img_metas) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] flip_direction = img_meta['flip_direction'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip, flip_direction) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #2
Source File: rpn.py From AugFPN with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #3
Source File: point_rend_roi_head.py From mmdetection with Apache License 2.0 | 5 votes |
def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): """Test for mask head with test time augmentation.""" if det_bboxes.shape[0] == 0: segm_result = [[] for _ in range(self.mask_head.num_classes)] else: aug_masks = [] for x, img_meta in zip(feats, img_metas): img_shape = img_meta[0]['img_shape'] scale_factor = img_meta[0]['scale_factor'] flip = img_meta[0]['flip'] _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, scale_factor, flip) mask_rois = bbox2roi([_bboxes]) mask_results = self._mask_forward(x, mask_rois) mask_results['mask_pred'] = self._mask_point_forward_test( x, mask_rois, det_labels, mask_results['mask_pred'], img_metas) # convert to numpy array to save memory aug_masks.append( mask_results['mask_pred'].sigmoid().cpu().numpy()) merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) ori_shape = img_metas[0][0]['ori_shape'] segm_result = self.mask_head.get_seg_masks( merged_masks, det_bboxes, det_labels, self.test_cfg, ori_shape, scale_factor=1.0, rescale=False) return segm_result
Example #4
Source File: rpn.py From ttfnet with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #5
Source File: rpn.py From CenterNet with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #6
Source File: rpn.py From hrnet with MIT License | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #7
Source File: rpn.py From kaggle-imaterialist with MIT License | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #8
Source File: rpn.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #9
Source File: rpn.py From Cascade-RPN with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #10
Source File: rpn.py From FoveaBox with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #11
Source File: rpn.py From Libra_R-CNN with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #12
Source File: rpn.py From Reasoning-RCNN with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #13
Source File: rpn.py From IoU-Uniform-R-CNN with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #14
Source File: rpn.py From RDSNet with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #15
Source File: rpn.py From Grid-R-CNN with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #16
Source File: rpn.py From kaggle-kuzushiji-recognition with MIT License | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #17
Source File: rpn.py From PolarMask with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #18
Source File: rpn.py From mmdetection_with_SENet154 with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #19
Source File: rpn.py From mmdetection-annotated with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #20
Source File: rpn.py From GCNet with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()
Example #21
Source File: rpn.py From AerialDetection with Apache License 2.0 | 5 votes |
def aug_test(self, imgs, img_metas, rescale=False): proposal_list = self.aug_test_rpn( self.extract_feats(imgs), img_metas, self.test_cfg.rpn) if not rescale: for proposals, img_meta in zip(proposal_list, img_metas[0]): img_shape = img_meta['img_shape'] scale_factor = img_meta['scale_factor'] flip = img_meta['flip'] proposals[:, :4] = bbox_mapping(proposals[:, :4], img_shape, scale_factor, flip) # TODO: remove this restriction return proposal_list[0].cpu().numpy()