Python mmdet.core.tensor2imgs() Examples
The following are 30
code examples of mmdet.core.tensor2imgs().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mmdet.core
, or try the search function
.
Example #1
Source File: rpn.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #2
Source File: rpn.py From RDSNet with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #3
Source File: rpn.py From RDSNet with Apache License 2.0 | 5 votes |
def show_result(self, data, result, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #4
Source File: rpn.py From IoU-Uniform-R-CNN with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #5
Source File: rpn.py From Reasoning-RCNN with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss(*rpn_loss_inputs) return losses
Example #6
Source File: rpn.py From Reasoning-RCNN with Apache License 2.0 | 5 votes |
def show_result(self, data, result, img_norm_cfg): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=20)
Example #7
Source File: rpn.py From Libra_R-CNN with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #8
Source File: rpn.py From Libra_R-CNN with Apache License 2.0 | 5 votes |
def show_result(self, data, result, img_norm_cfg, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #9
Source File: rpn.py From FoveaBox with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #10
Source File: rpn.py From FoveaBox with Apache License 2.0 | 5 votes |
def show_result(self, data, result, img_norm_cfg, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #11
Source File: rpn.py From Cascade-RPN with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #12
Source File: rpn.py From Cascade-RPN with Apache License 2.0 | 5 votes |
def show_result(self, data, result, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #13
Source File: rpn.py From IoU-Uniform-R-CNN with Apache License 2.0 | 5 votes |
def show_result(self, data, result, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #14
Source File: rpn.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 5 votes |
def show_result(self, data, result, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #15
Source File: rpn.py From kaggle-imaterialist with MIT License | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #16
Source File: rpn.py From kaggle-imaterialist with MIT License | 5 votes |
def show_result(self, data, result, img_norm_cfg, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #17
Source File: rpn.py From hrnet with MIT License | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #18
Source File: rpn.py From hrnet with MIT License | 5 votes |
def show_result(self, data, result, img_norm_cfg, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #19
Source File: rpn.py From CenterNet with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #20
Source File: rpn.py From CenterNet with Apache License 2.0 | 5 votes |
def show_result(self, data, result, img_norm_cfg, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #21
Source File: rpn.py From ttfnet with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #22
Source File: rpn.py From ttfnet with Apache License 2.0 | 5 votes |
def show_result(self, data, result, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #23
Source File: rpn.py From AugFPN with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #24
Source File: rpn.py From AugFPN with Apache License 2.0 | 5 votes |
def show_result(self, data, result, img_norm_cfg, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #25
Source File: rpn.py From PolarMask with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #26
Source File: rpn.py From GCNet with Apache License 2.0 | 5 votes |
def show_result(self, data, result, img_norm_cfg, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #27
Source File: rpn.py From mmdetection-annotated with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #28
Source File: rpn.py From mmdetection-annotated with Apache License 2.0 | 5 votes |
def show_result(self, data, result, img_norm_cfg, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)
Example #29
Source File: rpn.py From GCNet with Apache License 2.0 | 5 votes |
def forward_train(self, img, img_meta, gt_bboxes=None, gt_bboxes_ignore=None): if self.train_cfg.rpn.get('debug', False): self.rpn_head.debug_imgs = tensor2imgs(img) x = self.extract_feat(img) rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses
Example #30
Source File: rpn.py From Grid-R-CNN with Apache License 2.0 | 5 votes |
def show_result(self, data, result, img_norm_cfg, dataset=None, top_k=20): """Show RPN proposals on the image. Although we assume batch size is 1, this method supports arbitrary batch size. """ img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] mmcv.imshow_bboxes(img_show, result, top_k=top_k)