Python config.config.batch_size() Examples
The following are 28
code examples of config.config.batch_size().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
config.config
, or try the search function
.
Example #1
Source File: train.py From Sequence-to-Sequence-101 with MIT License | 6 votes |
def main(): data_transformer = DataTransformer(config.dataset_path, use_cuda=config.use_cuda) # define our models vanilla_encoder = VanillaEncoder(vocab_size=data_transformer.vocab_size, embedding_size=config.encoder_embedding_size, output_size=config.encoder_output_size) vanilla_decoder = VanillaDecoder(hidden_size=config.decoder_hidden_size, output_size=data_transformer.vocab_size, max_length=data_transformer.max_length, teacher_forcing_ratio=config.teacher_forcing_ratio, sos_id=data_transformer.SOS_ID, use_cuda=config.use_cuda) if config.use_cuda: vanilla_encoder = vanilla_encoder.cuda() vanilla_decoder = vanilla_decoder.cuda() seq2seq = Seq2Seq(encoder=vanilla_encoder, decoder=vanilla_decoder) trainer = Trainer(seq2seq, data_transformer, config.learning_rate, config.use_cuda) trainer.train(num_epochs=config.num_epochs, batch_size=config.batch_size, pretrained=False)
Example #2
Source File: main.py From QANet-pytorch- with MIT License | 6 votes |
def main(_): if config.mode == "train": train_entry(config) elif config.mode == "data": preproc(config) elif config.mode == "debug": config.batch_size = 2 config.num_steps = 32 config.val_num_batches = 2 config.checkpoint = 2 config.period = 1 train_entry(config) elif config.mode == "test": test_entry(config) else: print("Unknown mode") exit(0)
Example #3
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=False, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #4
Source File: train.py From Sequence-to-Sequence-101 with MIT License | 5 votes |
def train(self, num_epochs, batch_size, pretrained=False): if pretrained: self.load_model() step = 0 for epoch in range(0, num_epochs): mini_batches = self.data_transformer.mini_batches(batch_size=batch_size) for input_batch, target_batch in mini_batches: self.optimizer.zero_grad() decoder_outputs, decoder_hidden = self.model(input_batch, target_batch) # calculate the loss and back prop. cur_loss = self.get_loss(decoder_outputs, target_batch[0]) # logging step += 1 if step % 50 == 0: print("Step:", step, "char-loss: ", cur_loss.data.numpy()) self.save_model() cur_loss.backward() # optimize self.optimizer.step() self.save_model()
Example #5
Source File: main.py From QANet-pytorch- with MIT License | 5 votes |
def test_entry(config): with open(config.dev_eval_file, "r") as fh: dev_eval_file = json.load(fh) dev_dataset = get_loader(config.dev_record_file, config.batch_size) fn = os.path.join(config.save_dir, "model.pt") model = torch.load(fn) test(model, dev_dataset, dev_eval_file, 0)
Example #6
Source File: main.py From QANet-pytorch- with MIT License | 5 votes |
def get_loader(npz_file, batch_size): dataset = SQuADDataset(npz_file, batch_size) data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=5, collate_fn=collate) return data_loader
Example #7
Source File: main.py From QANet-pytorch- with MIT License | 5 votes |
def __init__(self, npz_file, batch_size): data = np.load(npz_file) self.context_idxs = data["context_idxs"] self.context_char_idxs = data["context_char_idxs"] self.ques_idxs = data["ques_idxs"] self.ques_char_idxs = data["ques_char_idxs"] self.y1s = data["y1s"] self.y2s = data["y2s"] self.ids = data["ids"] self.num = len(self.ids)
Example #8
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #9
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #10
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #11
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #12
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #13
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #14
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #15
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=False, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #16
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=False, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #17
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=False, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #18
Source File: dataloader.py From FNA with Apache License 2.0 | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'train_root': config.train_root_folder, 'val_root': config.eval_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, \ config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False # import pdb;pdb.set_trace() train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #19
Source File: main.py From ecg_pytorch with Apache License 2.0 | 5 votes |
def val(args): list_threhold = [0.5] model = getattr(models, config.model_name)() if args.ckpt: model.load_state_dict(torch.load(args.ckpt, map_location='cpu')['state_dict']) model = model.to(device) criterion = nn.BCEWithLogitsLoss() val_dataset = ECGDataset(data_path=config.train_data, train=False) val_dataloader = DataLoader(val_dataset, batch_size=config.batch_size, num_workers=4) for threshold in list_threhold: val_loss, val_f1 = val_epoch(model, criterion, val_dataloader, threshold) print('threshold %.2f val_loss:%0.3e val_f1:%.3f\n' % (threshold, val_loss, val_f1)) #提交结果使用
Example #20
Source File: eval.py From Regional-Homogeneity with MIT License | 5 votes |
def build_in_eval(): with tf.Session() as sess: model = Evaluator(sess) df = PNGDataFlow(FLAGS.result_dir, FLAGS.test_list_filename, FLAGS.ground_truth_file, img_num=FLAGS.img_num) df = BatchData(df, FLAGS.batch_size, remainder=True) df.reset_state() avgMetric = AvgMetric(datashape=[len(FLAGS.test_networks)]) total_batch = df.ds.img_num / FLAGS.batch_size for batch_index, (x_batch, y_batch, name_batch) in tqdm(enumerate(df), total=total_batch): acc, pred = model.eval(x_batch, y_batch) avgMetric.update(acc) return 1 - avgMetric.get_status()
Example #21
Source File: attack.py From Regional-Homogeneity with MIT License | 5 votes |
def perturb(self, images, labels): batch_size = images.shape[0] if batch_size < FLAGS.batch_size: pad_num = FLAGS.batch_size - batch_size pad_img = np.zeros([pad_num, 299, 299, 3]) images = np.concatenate([images, pad_img]) pad_label = np.zeros([pad_num]) labels = np.concatenate([labels, pad_label]) adv_images = sess.run(self.x_adv, feed_dict={self.x_input: images, self.y_input: labels}) return adv_images[:batch_size]
Example #22
Source File: attack.py From Regional-Homogeneity with MIT License | 5 votes |
def __init__(self, sess): self.sess = sess self.step_size = FLAGS.step_size / 255.0 self.max_epsilon = FLAGS.max_epsilon / 255.0 # Prepare graph batch_shape = [FLAGS.batch_size, 299, 299, 3] self.x_input = tf.placeholder(tf.float32, shape=batch_shape) x_max = tf.clip_by_value(self.x_input + self.max_epsilon, 0., 1.0) x_min = tf.clip_by_value(self.x_input - self.max_epsilon, 0., 1.0) self.y_input = tf.placeholder(tf.int64, shape=batch_shape[0]) i = tf.constant(0) self.x_adv, _, _, _, _ = tf.while_loop(self.stop, self.graph, [self.x_input, self.y_input, i, x_max, x_min]) self.restore()
Example #23
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #24
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #25
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #26
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #27
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #28
Source File: main.py From QANet-pytorch- with MIT License | 4 votes |
def train_entry(config): from models import QANet with open(config.word_emb_file, "rb") as fh: word_mat = np.array(json.load(fh), dtype=np.float32) with open(config.char_emb_file, "rb") as fh: char_mat = np.array(json.load(fh), dtype=np.float32) with open(config.dev_eval_file, "r") as fh: dev_eval_file = json.load(fh) print("Building model...") train_dataset = get_loader(config.train_record_file, config.batch_size) dev_dataset = get_loader(config.dev_record_file, config.batch_size) lr = config.learning_rate base_lr = 1 lr_warm_up_num = config.lr_warm_up_num model = QANet(word_mat, char_mat).to(device) ema = EMA(config.decay) for name, param in model.named_parameters(): if param.requires_grad: ema.register(name, param.data) parameters = filter(lambda param: param.requires_grad, model.parameters()) optimizer = optim.Adam(lr=base_lr, betas=(0.9, 0.999), eps=1e-7, weight_decay=5e-8, params=parameters) cr = lr / math.log2(lr_warm_up_num) scheduler = optim.lr_scheduler.LambdaLR( optimizer, lr_lambda=lambda ee: cr * math.log2(ee + 1) if ee < lr_warm_up_num else lr) best_f1 = 0 best_em = 0 patience = 0 unused = False for iter in range(config.num_epoch): train(model, optimizer, scheduler, train_dataset, dev_dataset, dev_eval_file, iter, ema) ema.assign(model) metrics = test(model, dev_dataset, dev_eval_file, (iter+1)*len(train_dataset)) dev_f1 = metrics["f1"] dev_em = metrics["exact_match"] if dev_f1 < best_f1 and dev_em < best_em: patience += 1 if patience > config.early_stop: break else: patience = 0 best_f1 = max(best_f1, dev_f1) best_em = max(best_em, dev_em) fn = os.path.join(config.save_dir, "model.pt") torch.save(model, fn) ema.resume(model)