Python config.config.lr() Examples
The following are 13
code examples of config.config.lr().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
config.config
, or try the search function
.
Example #1
Source File: main.py From mac-network with Apache License 2.0 | 6 votes |
def logInit(): with open(config.logFile(), "a+") as outFile: writeline(outFile, config.expName) headers = ["epoch", "trainAcc", "valAcc", "trainLoss", "valLoss"] if config.evalTrain: headers += ["evalTrainAcc", "evalTrainLoss"] if config.extra: if config.evalTrain: headers += ["thAcc", "thLoss"] headers += ["vhAcc", "vhLoss"] headers += ["time", "lr"] writelist(outFile, headers) # lr assumed to be last # Writes log record to file
Example #2
Source File: main.py From mac-network with Apache License 2.0 | 6 votes |
def loadWeights(sess, saver, init): if config.restoreEpoch > 0 or config.restore: # restore last epoch only if restoreEpoch isn't set if config.restoreEpoch == 0: # restore last logged epoch config.restoreEpoch, config.lr = lastLoggedEpoch() print(bcolored("Restoring epoch {} and lr {}".format(config.restoreEpoch, config.lr),"cyan")) print(bcolored("Restoring weights", "blue")) saver.restore(sess, config.weightsFile(config.restoreEpoch)) epoch = config.restoreEpoch else: print(bcolored("Initializing weights", "blue")) sess.run(init) logInit() epoch = 0 return epoch ###################################### training / evaluation ###################################### # Chooses data to train on (main / extra) data.
Example #3
Source File: main.py From mac-network with Apache License 2.0 | 6 votes |
def improveEnough(curr, prior, lr): prevRes = prior["prev"]["res"] currRes = curr["res"] if prevRes is None: return True prevTrainLoss = prevRes["train"]["loss"] currTrainLoss = currRes["train"]["loss"] lossDiff = prevTrainLoss - currTrainLoss notImprove = ((lossDiff < 0.015 and prevTrainLoss < 0.5 and lr > 0.00002) or \ (lossDiff < 0.008 and prevTrainLoss < 0.15 and lr > 0.00001) or \ (lossDiff < 0.003 and prevTrainLoss < 0.10 and lr > 0.000005)) #(prevTrainLoss < 0.2 and config.lr > 0.000015) return not notImprove
Example #4
Source File: main.py From mac-network with Apache License 2.0 | 5 votes |
def logRecord(epoch, epochTime, lr, trainRes, evalRes, extraEvalRes): with open(config.logFile(), "a+") as outFile: record = [epoch, trainRes["acc"], evalRes["val"]["acc"], trainRes["loss"], evalRes["val"]["loss"]] if config.evalTrain: record += [evalRes["evalTrain"]["acc"], evalRes["evalTrain"]["loss"]] if config.extra: if config.evalTrain: record += [extraEvalRes["evalTrain"]["acc"], extraEvalRes["evalTrain"]["loss"]] record += [extraEvalRes["val"]["acc"], extraEvalRes["val"]["loss"]] record += [epochTime, lr] writelist(outFile, record) # Gets last logged epoch and learning rate
Example #5
Source File: main.py From mac-network with Apache License 2.0 | 5 votes |
def lastLoggedEpoch(): with open(config.logFile(), "r") as inFile: lastLine = list(inFile)[-1].split(",") epoch = int(lastLine[0]) lr = float(lastLine[-1]) return epoch, lr ################################## printing, output and analysis ################################## # Analysis by type
Example #6
Source File: model.py From mac-network with Apache License 2.0 | 5 votes |
def createFeedDict(self, data, images, train): feedDict = { self.questionsIndicesAll: data["questions"], self.questionLengthsAll: data["questionLengths"], self.imagesPlaceholder: images["images"], self.answersIndicesAll: data["answers"], self.dropouts["encInput"]: config.encInputDropout if train else 1.0, self.dropouts["encState"]: config.encStateDropout if train else 1.0, self.dropouts["stem"]: config.stemDropout if train else 1.0, self.dropouts["question"]: config.qDropout if train else 1.0, #_ self.dropouts["memory"]: config.memoryDropout if train else 1.0, self.dropouts["read"]: config.readDropout if train else 1.0, #_ self.dropouts["write"]: config.writeDropout if train else 1.0, self.dropouts["output"]: config.outputDropout if train else 1.0, # self.dropouts["question"]Out: config.qDropoutOut if train else 1.0, # self.dropouts["question"]MAC: config.qDropoutMAC if train else 1.0, self.lr: config.lr, self.train: train } # if config.tempDynamic: # feedDict[self.tempAnnealRate] = tempAnnealRate return feedDict # Splits data to a specific GPU (tower) for parallelization
Example #7
Source File: model.py From mac-network with Apache License 2.0 | 5 votes |
def addOptimizerOp(self): with tf.variable_scope("trainAddOptimizer"): self.globalStep = tf.Variable(0, dtype = tf.int32, trainable = False, name = "globalStep") # init to 0 every run? optimizer = tf.train.AdamOptimizer(learning_rate = self.lr) return optimizer
Example #8
Source File: train.py From Regional-Homogeneity with MIT License | 5 votes |
def optimizer(self): lr = tf.get_variable('learning_rate', initializer=FLAGS.lr * (FLAGS.batch / 256.0), trainable=False) if FLAGS.optimizer == 'momentum': opt = tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True) else: assert FLAGS.optimizer == 'adam' opt = tf.train.AdamOptimizer(lr) return opt
Example #9
Source File: train.py From Regional-Homogeneity with MIT License | 5 votes |
def get_config(model): nr_tower = max(get_num_gpu(), 1) assert FLAGS.batch % nr_tower == 0 batch = FLAGS.batch // nr_tower logger.info("Running on {} towers. Batch size per tower: {}".format(nr_tower, batch)) data = QueueInput(get_dataflow(FLAGS.train_list_filename, batch)) # learning rate START_LR = FLAGS.lr BASE_LR = START_LR * (FLAGS.batch / 256.0) lr_list = [] for idx, decay_point in enumerate(FLAGS.lr_decay_points): lr_list.append((decay_point, BASE_LR * 0.1 ** idx)) callbacks = [ ScopeModelSaver(checkpoint_dir=FLAGS.RHP_savepath, scope='RHP'), EstimatedTimeLeft(), ScheduledHyperParamSetter('learning_rate', lr_list), ] if get_num_gpu() > 0: callbacks.append(GPUUtilizationTracker()) return TrainConfig( model=model, data=data, callbacks=callbacks, steps_per_epoch=FLAGS.steps_per_epoch // FLAGS.batch, max_epoch=FLAGS.max_epoch, session_init=MultipleRestore() )
Example #10
Source File: trainer.py From pggan-pytorch with MIT License | 5 votes |
def renew_everything(self): # renew dataloader. self.loader = DL.dataloader(config) self.loader.renew(min(floor(self.resl), self.max_resl)) # define tensors self.z = torch.FloatTensor(self.loader.batchsize, self.nz) self.x = torch.FloatTensor(self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize) self.x_tilde = torch.FloatTensor(self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize) self.real_label = torch.FloatTensor(self.loader.batchsize).fill_(1) self.fake_label = torch.FloatTensor(self.loader.batchsize).fill_(0) # enable cuda if self.use_cuda: self.z = self.z.cuda() self.x = self.x.cuda() self.x_tilde = self.x.cuda() self.real_label = self.real_label.cuda() self.fake_label = self.fake_label.cuda() torch.cuda.manual_seed(config.random_seed) # wrapping autograd Variable. self.x = Variable(self.x) self.x_tilde = Variable(self.x_tilde) self.z = Variable(self.z) self.real_label = Variable(self.real_label) self.fake_label = Variable(self.fake_label) # ship new model to cuda. if self.use_cuda: self.G = self.G.cuda() self.D = self.D.cuda() # optimizer betas = (self.config.beta1, self.config.beta2) if self.optimizer == 'adam': self.opt_g = Adam(filter(lambda p: p.requires_grad, self.G.parameters()), lr=self.lr, betas=betas, weight_decay=0.0) self.opt_d = Adam(filter(lambda p: p.requires_grad, self.D.parameters()), lr=self.lr, betas=betas, weight_decay=0.0)
Example #11
Source File: pggan.py From progressive-growing-of-gans.pytorch with MIT License | 5 votes |
def renew_everything(self): '''Renew the dataloader ''' self.loader = dl.dataloader(self.config) self.loader.renew(min(floor(self.resl), self.max_resl)) # Define tensors self.z = torch.FloatTensor(self.loader.batchsize, self.nz) self.x = torch.FloatTensor(self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize) self.x_tilde = torch.FloatTensor(self.loader.batchsize, 3, self.loader.imsize, self.loader.imsize) self.real_label = torch.FloatTensor(self.loader.batchsize).fill_(1) self.fake_label = torch.FloatTensor(self.loader.batchsize).fill_(0) # Enable CUDA if self.use_cuda: self.z = self.z.cuda() self.x = self.x.cuda() self.x_tilde = self.x_tilde.cuda() self.real_label = self.real_label.cuda() self.fake_label = self.fake_label.cuda() torch.cuda.manual_seed(config.random_seed) # Wrapping `autograd.Variable` self.x = Variable(self.x) self.x_tilde = Variable(self.x_tilde) self.z = Variable(self.z) self.real_label = Variable(self.real_label) self.fake_label = Variable(self.fake_label) # Ship new model to CUDA if self.use_cuda: self.G = self.G.cuda() self.D = self.D.cuda() # Setup the optimizer betas = (self.config.beta1, self.config.beta2) if self.optimizer == 'adam': self.opt_g = Adam(filter(lambda p: p.requires_grad, self.G.parameters()), lr=self.lr, betas=betas, weight_decay=0.0) self.opt_d = Adam(filter(lambda p: p.requires_grad, self.D.parameters()), lr=self.lr, betas=betas, weight_decay=0.0)
Example #12
Source File: model.py From mac-network with Apache License 2.0 | 4 votes |
def addPlaceholders(self): with tf.variable_scope("Placeholders"): ## data # questions self.questionsIndicesAll = tf.placeholder(tf.int32, shape = (None, None)) self.questionLengthsAll = tf.placeholder(tf.int32, shape = (None, )) # images # put image known dimension as last dim? self.imagesPlaceholder = tf.placeholder(tf.float32, shape = (None, None, None, None)) self.imagesAll = tf.transpose(self.imagesPlaceholder, (0, 2, 3, 1)) # self.imageH = tf.shape(self.imagesAll)[1] # self.imageW = tf.shape(self.imagesAll)[2] # answers self.answersIndicesAll = tf.placeholder(tf.int32, shape = (None, )) ## optimization self.lr = tf.placeholder(tf.float32, shape = ()) self.train = tf.placeholder(tf.bool, shape = ()) self.batchSizeAll = tf.shape(self.questionsIndicesAll)[0] ## dropouts # TODO: change dropouts to be 1 - current self.dropouts = { "encInput": tf.placeholder(tf.float32, shape = ()), "encState": tf.placeholder(tf.float32, shape = ()), "stem": tf.placeholder(tf.float32, shape = ()), "question": tf.placeholder(tf.float32, shape = ()), # self.dropouts["question"]Out = tf.placeholder(tf.float32, shape = ()) # self.dropouts["question"]MAC = tf.placeholder(tf.float32, shape = ()) "read": tf.placeholder(tf.float32, shape = ()), "write": tf.placeholder(tf.float32, shape = ()), "memory": tf.placeholder(tf.float32, shape = ()), "output": tf.placeholder(tf.float32, shape = ()) } # batch norm params self.batchNorm = {"decay": config.bnDecay, "train": self.train} # if config.parametricDropout: # self.dropouts["question"] = parametricDropout("qDropout", self.train) # self.dropouts["read"] = parametricDropout("readDropout", self.train) # else: # self.dropouts["question"] = self.dropouts["_q"] # self.dropouts["read"] = self.dropouts["_read"] # if config.tempDynamic: # self.tempAnnealRate = tf.placeholder(tf.float32, shape = ()) self.H, self.W, self.imageInDim = config.imageDims # Feeds data into placeholders. See addPlaceholders method for further details.
Example #13
Source File: pggan.py From progressive-growing-of-gans.pytorch with MIT License | 4 votes |
def __init__(self, config): self.config = config if torch.cuda.is_available(): self.use_cuda = True torch.set_default_tensor_type('torch.cuda.FloatTensor') else: self.use_cuda = False torch.set_default_tensor_type('torch.FloatTensor') self.nz = config.nz self.optimizer = config.optimizer self.resl = 2 # we start with resolution 2^2 = 4 self.lr = config.lr self.eps_drift = config.eps_drift self.smoothing = config.smoothing self.max_resl = config.max_resl self.trns_tick = config.trns_tick self.stab_tick = config.stab_tick self.TICK = config.TICK self.global_iter = 0 self.global_tick = 0 self.kimgs = 0 self.stack = 0 self.epoch = 0 self.fadein = {'gen': None, 'dis': None} self.complete = {'gen': 0, 'dis': 0} self.phase = 'init' self.flag_flush_gen = False self.flag_flush_dis = False self.flag_add_noise = self.config.flag_add_noise self.flag_add_drift = self.config.flag_add_drift # Network settings self.G = Generator(config) print('Generator architecture:\n{}'.format(self.G.model)) self.D = Discriminator(config) print('Discriminator architecture:\n{}'.format(self.D.model)) self.criterion = nn.MSELoss() if self.use_cuda: self.criterion = self.criterion.cuda() torch.cuda.manual_seed(config.random_seed) if config.n_gpu == 1: self.G = nn.DataParallel(self.G).cuda(device=0) self.D = nn.DataParallel(self.D).cuda(device=0) else: gpus = [] for i in range(config.n_gpu): gpus.append(i) self.G = nn.DataParallel(self.G, device_ids=gpus).cuda() self.D = nn.DataParallel(self.D, device_ids=gpus).cuda() # Define tensors, ship model to cuda, and get dataloader self.renew_everything() # Tensorboard self.use_tb = config.use_tb if self.use_tb: self.tb = tensorboard.tf_recorder()