Python config.config.num_workers() Examples
The following are 19
code examples of config.config.num_workers().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
config.config
, or try the search function
.
Example #1
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=False, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #2
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #3
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #4
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #5
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #6
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #7
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #8
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=False, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #9
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=False, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #10
Source File: dataloader.py From TorchSeg with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=False, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #11
Source File: dataloader.py From FNA with Apache License 2.0 | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'train_root': config.train_root_folder, 'val_root': config.eval_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, \ config.batch_size * config.niters_per_epoch) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False # import pdb;pdb.set_trace() train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #12
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #13
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #14
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #15
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #16
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #17
Source File: dataloader.py From TreeFilter-Torch with MIT License | 5 votes |
def get_train_loader(engine, dataset): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std, config.target_size) train_dataset = dataset(data_setting, "train", train_preprocess, config.niters_per_epoch * config.batch_size) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler
Example #18
Source File: parall_module_local_v1.py From insightface with MIT License | 4 votes |
def __init__(self, symbol, data_names, label_names, logger=logging, context=ctx.cpu(), work_load_list=None, asymbol = None, args = None): super(ParallModule, self).__init__(logger=logger) self._symbol = symbol self._asymbol = asymbol self._data_names = data_names self._label_names = label_names self._context = context self._work_load_list = work_load_list self._num_classes = config.num_classes self._batch_size = args.batch_size self._verbose = args.verbose self._emb_size = config.emb_size self._local_class_start = args.local_class_start self._iter = 0 self._curr_module = None self._num_workers = config.num_workers self._num_ctx = len(self._context) self._ctx_num_classes = args.ctx_num_classes self._nd_cache = {} self._ctx_cpu = mx.cpu() self._ctx_single_gpu = self._context[-1] self._fixed_param_names = None self._curr_module = Module(self._symbol, self._data_names, self._label_names, logger=self.logger, context=self._context, work_load_list=self._work_load_list, fixed_param_names=self._fixed_param_names) self._arcface_modules = [] self._ctx_class_start = [] for i in range(len(self._context)): args._ctxid = i _module = Module(self._asymbol(args), self._data_names, self._label_names, logger=self.logger, context=mx.gpu(i), work_load_list=self._work_load_list, fixed_param_names=self._fixed_param_names) self._arcface_modules.append(_module) _c = args.local_class_start + i*args.ctx_num_classes self._ctx_class_start.append(_c) self._usekv = False if self._usekv: self._distkv = mx.kvstore.create('dist_sync') self._kvinit = {}
Example #19
Source File: parall_module_local_v1.py From 1.FaceRecognition with MIT License | 4 votes |
def __init__(self, symbol, data_names, label_names, logger=logging, context=ctx.cpu(), work_load_list=None, asymbol = None, args = None): super(ParallModule, self).__init__(logger=logger) self._symbol = symbol self._asymbol = asymbol self._data_names = data_names self._label_names = label_names self._context = context self._work_load_list = work_load_list self._num_classes = config.num_classes self._batch_size = args.batch_size self._verbose = args.verbose self._emb_size = config.emb_size self._local_class_start = args.local_class_start self._iter = 0 self._curr_module = None self._num_workers = config.num_workers self._num_ctx = len(self._context) self._ctx_num_classes = args.ctx_num_classes self._nd_cache = {} self._ctx_cpu = mx.cpu() self._ctx_single_gpu = self._context[-1] self._fixed_param_names = None self._curr_module = Module(self._symbol, self._data_names, self._label_names, logger=self.logger, context=self._context, work_load_list=self._work_load_list, fixed_param_names=self._fixed_param_names) self._arcface_modules = [] self._ctx_class_start = [] for i in range(len(self._context)): args._ctxid = i _module = Module(self._asymbol(args), self._data_names, self._label_names, logger=self.logger, context=mx.gpu(i), work_load_list=self._work_load_list, fixed_param_names=self._fixed_param_names) self._arcface_modules.append(_module) _c = args.local_class_start + i*args.ctx_num_classes self._ctx_class_start.append(_c) self._usekv = False if self._usekv: self._distkv = mx.kvstore.create('dist_sync') self._kvinit = {}