Python pyomo.environ.Objective() Examples

The following are 5 code examples of pyomo.environ.Objective(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pyomo.environ , or try the search function .
Example #1
Source File: energySystemModel.py    From FINE with MIT License 6 votes vote down vote up
def declareObjective(self, pyM):
        """
        Declare the objective function by obtaining the contributions to the objective function from all modeling
        classes. Currently, the only objective function which can be selected is the sum of the total annual cost of all
        components.

        :param pyM: a pyomo ConcreteModel instance which contains parameters, sets, variables,
            constraints and objective required for the optimization set up and solving.
        :type pyM: pyomo ConcreteModel
        """
        utils.output('Declaring objective function...', self.verbose, 0)

        def objective(pyM):
            TAC = sum(mdl.getObjectiveFunctionContribution(self, pyM) for mdl in self.componentModelingDict.values())
            return TAC
        pyM.Obj = pyomo.Objective(rule=objective) 
Example #2
Source File: opt.py    From PyPSA with GNU General Public License v3.0 5 votes vote down vote up
def l_objective(model,objective=None, sense=minimize):
    """
    A replacement for pyomo's Objective that quickly builds linear
    objectives.

    Instead of

    model.objective = Objective(expr=sum(vars[i]*coeffs[i] for i in index)+constant)

    call instead

    l_objective(model,objective,sense)

    where objective is an LExpression.

    Variables may be repeated with different coefficients, which pyomo
    will sum up.


    Parameters
    ----------
    model : pyomo.environ.ConcreteModel
    objective : LExpression
    sense : minimize / maximize

    """

    if objective is None:
        objective = LExpression()

    #initialise with a dummy
    model.objective = Objective(expr = 0., sense=sense)
    model.objective._expr = _build_sum_expression(objective.variables, constant=objective.constant) 
Example #3
Source File: Model_Resolution.py    From MicroGrids with European Union Public License 1.1 4 votes vote down vote up
def Model_Resolution(model,datapath="Example/data.dat"):   
    '''
    This function creates the model and call Pyomo to solve the instance of the proyect 
    
    :param model: Pyomo model as defined in the Model_creation library
    :param datapath: path to the input data file
    
    :return: The solution inside an object call instance.
    '''
    
    from Constraints import  Net_Present_Cost, Solar_Energy,State_of_Charge,\
    Maximun_Charge, Minimun_Charge, Max_Power_Battery_Charge, Max_Power_Battery_Discharge, Max_Bat_in, Max_Bat_out, \
    Financial_Cost, Energy_balance, Maximun_Lost_Load,Scenario_Net_Present_Cost, Scenario_Lost_Load_Cost, \
    Initial_Inversion, Operation_Maintenance_Cost, Total_Finalcial_Cost, Battery_Reposition_Cost, Maximun_Diesel_Energy, Diesel_Comsuption,Diesel_Cost_Total
    
    
    # OBJETIVE FUNTION:
    model.ObjectiveFuntion = Objective(rule=Net_Present_Cost, sense=minimize)  
    
    # CONSTRAINTS
    #Energy constraints
    model.EnergyBalance = Constraint(model.scenario,model.periods, rule=Energy_balance)
    model.MaximunLostLoad = Constraint(model.scenario, rule=Maximun_Lost_Load) # Maximum permissible lost load
    model.ScenarioLostLoadCost = Constraint(model.scenario, rule=Scenario_Lost_Load_Cost)

    # PV constraints
    model.SolarEnergy = Constraint(model.scenario, model.periods, rule=Solar_Energy)  # Energy output of the solar panels
    # Battery constraints
    model.StateOfCharge = Constraint(model.scenario, model.periods, rule=State_of_Charge) # State of Charge of the battery
    model.MaximunCharge = Constraint(model.scenario, model.periods, rule=Maximun_Charge) # Maximun state of charge of the Battery
    model.MinimunCharge = Constraint(model.scenario, model.periods, rule=Minimun_Charge) # Minimun state of charge
    model.MaxPowerBatteryCharge = Constraint(rule=Max_Power_Battery_Charge)  # Max power battery charge constraint
    model.MaxPowerBatteryDischarge = Constraint(rule=Max_Power_Battery_Discharge)    # Max power battery discharge constraint
    model.MaxBatIn = Constraint(model.scenario, model.periods, rule=Max_Bat_in) # Minimun flow of energy for the charge fase
    model.Maxbatout = Constraint(model.scenario, model.periods, rule=Max_Bat_out) #minimun flow of energy for the discharge fase

    # Diesel Generator constraints
    model.MaximunDieselEnergy = Constraint(model.scenario, model.periods, rule=Maximun_Diesel_Energy) # Maximun energy output of the diesel generator
    model.DieselComsuption = Constraint(model.scenario, model.periods, rule=Diesel_Comsuption)    # Diesel comsuption 
    model.DieselCostTotal = Constraint(model.scenario, rule=Diesel_Cost_Total)
    
    # Financial Constraints
    model.FinancialCost = Constraint(rule=Financial_Cost) # Financial cost
    model.ScenarioNetPresentCost = Constraint(model.scenario, rule=Scenario_Net_Present_Cost)    
    model.InitialInversion = Constraint(rule=Initial_Inversion)
    model.OperationMaintenanceCost = Constraint(rule=Operation_Maintenance_Cost)
    model.TotalFinalcialCost = Constraint(rule=Total_Finalcial_Cost)
    model.BatteryRepositionCost = Constraint(rule=Battery_Reposition_Cost) 

    
    instance = model.create_instance(datapath) # load parameters       
    opt = SolverFactory('cplex') # Solver use during the optimization    
    results = opt.solve(instance, tee=True) # Solving a model instance 
    instance.solutions.load_from(results)  # Loading solution into instance
    return instance
    
    
    #\ 
Example #4
Source File: Model_Resolution.py    From MicroGrids with European Union Public License 1.1 4 votes vote down vote up
def Model_Resolution_Integer(model,datapath="Example/data_Integer.dat"):   
    '''
    This function creates the model and call Pyomo to solve the instance of the proyect 
    
    :param model: Pyomo model as defined in the Model_creation library
    
    :return: The solution inside an object call instance.
    '''
    from Constraints_Integer import  Net_Present_Cost, Solar_Energy, State_of_Charge, Maximun_Charge, \
    Minimun_Charge, Max_Power_Battery_Charge, Max_Power_Battery_Discharge, Max_Bat_in, Max_Bat_out, \
    Financial_Cost, Energy_balance, Maximun_Lost_Load, Generator_Cost_1_Integer,  \
    Total_Cost_Generator_Integer, Initial_Inversion, Operation_Maintenance_Cost,Total_Finalcial_Cost,\
    Battery_Reposition_Cost, Scenario_Lost_Load_Cost, Sceneario_Generator_Total_Cost, \
    Scenario_Net_Present_Cost, Generator_Bounds_Min_Integer, Generator_Bounds_Max_Integer,Energy_Genarator_Energy_Max_Integer

    # OBJETIVE FUNTION:
    model.ObjectiveFuntion = Objective(rule=Net_Present_Cost, sense=minimize)  
    
    # CONSTRAINTS
    #Energy constraints
    model.EnergyBalance = Constraint(model.scenario,model.periods, rule=Energy_balance)  # Energy balance
    model.MaximunLostLoad = Constraint(model.scenario,rule=Maximun_Lost_Load) # Maximum permissible lost load
    # PV constraints
    model.SolarEnergy = Constraint(model.scenario,model.periods, rule=Solar_Energy)  # Energy output of the solar panels
    # Battery constraints
    model.StateOfCharge = Constraint(model.scenario,model.periods, rule=State_of_Charge) # State of Charge of the battery
    model.MaximunCharge = Constraint(model.scenario,model.periods, rule=Maximun_Charge) # Maximun state of charge of the Battery
    model.MinimunCharge = Constraint(model.scenario,model.periods, rule=Minimun_Charge) # Minimun state of charge
    model.MaxPowerBatteryCharge = Constraint(rule=Max_Power_Battery_Charge)  # Max power battery charge constraint
    model.MaxPowerBatteryDischarge = Constraint(rule=Max_Power_Battery_Discharge)    # Max power battery discharge constraint
    model.MaxBatIn = Constraint(model.scenario,model.periods, rule=Max_Bat_in) # Minimun flow of energy for the charge fase
    model.Maxbatout = Constraint(model.scenario,model.periods, rule=Max_Bat_out) #minimun flow of energy for the discharge fase
   
    #Diesel Generator constraints
    model.GeneratorBoundsMin = Constraint(model.scenario,model.periods, rule=Generator_Bounds_Min_Integer) 
    model.GeneratorBoundsMax = Constraint(model.scenario,model.periods, rule=Generator_Bounds_Max_Integer)
    model.GeneratorCost1 = Constraint(model.scenario, model.periods,  rule=Generator_Cost_1_Integer)
    model.EnergyGenaratorEnergyMax = Constraint(model.scenario,model.periods, rule=Energy_Genarator_Energy_Max_Integer)
    model.TotalCostGenerator = Constraint(model.scenario, rule=Total_Cost_Generator_Integer)
    
    # Financial Constraints
    model.FinancialCost = Constraint(rule=Financial_Cost) # Financial cost
    model.InitialInversion = Constraint(rule=Initial_Inversion)
    model.OperationMaintenanceCost = Constraint(rule=Operation_Maintenance_Cost)
    model.TotalFinalcialCost = Constraint(rule=Total_Finalcial_Cost)
    model.BatteryRepositionCost = Constraint(rule=Battery_Reposition_Cost) 
    model.ScenarioLostLoadCost = Constraint(model.scenario, rule=Scenario_Lost_Load_Cost)
    model.ScenearioGeneratorTotalCost = Constraint(model.scenario, rule=Sceneario_Generator_Total_Cost)
    model.ScenarioNetPresentCost = Constraint(model.scenario, rule=Scenario_Net_Present_Cost) 
    
    
    instance = model.create_instance("Example/data_Integer.dat") # load parameters       
    opt = SolverFactory('cplex') # Solver use during the optimization    
#    opt.options['emphasis_memory'] = 'y'
#    opt.options['node_select'] = 3
    results = opt.solve(instance, tee=True,options_string="mipgap=0.07") # Solving a model instance 

    #    instance.write(io_options={'emphasis_memory':True})
    #options_string="mipgap=0.03", timelimit=1200
    instance.solutions.load_from(results) # Loading solution into instance
    return instance 
Example #5
Source File: Model_Resolution.py    From MicroGrids with European Union Public License 1.1 4 votes vote down vote up
def Model_Resolution_Dispatch(model,datapath="Example/data_Dispatch.dat"):   
    '''
    This function creates the model and call Pyomo to solve the instance of the proyect 
    
    :param model: Pyomo model as defined in the Model_creation library
    
    :return: The solution inside an object call instance.
    '''
    from Constraints_Dispatch import  Net_Present_Cost,  State_of_Charge, Maximun_Charge, \
    Minimun_Charge, Max_Bat_in, Max_Bat_out, \
    Energy_balance, Maximun_Lost_Load, Generator_Cost_1_Integer,  \
    Total_Cost_Generator_Integer, \
    Scenario_Lost_Load_Cost, \
     Generator_Bounds_Min_Integer, Generator_Bounds_Max_Integer,Energy_Genarator_Energy_Max_Integer

    # OBJETIVE FUNTION:
    model.ObjectiveFuntion = Objective(rule=Net_Present_Cost, sense=minimize)  
    
    # CONSTRAINTS
    #Energy constraints
    model.EnergyBalance = Constraint(model.periods, rule=Energy_balance)  # Energy balance
    model.MaximunLostLoad = Constraint(rule=Maximun_Lost_Load) # Maximum permissible lost load
    
    # Battery constraints
    model.StateOfCharge = Constraint(model.periods, rule=State_of_Charge) # State of Charge of the battery
    model.MaximunCharge = Constraint(model.periods, rule=Maximun_Charge) # Maximun state of charge of the Battery
    model.MinimunCharge = Constraint(model.periods, rule=Minimun_Charge) # Minimun state of charge
    model.MaxBatIn = Constraint(model.periods, rule=Max_Bat_in) # Minimun flow of energy for the charge fase
    model.Maxbatout = Constraint(model.periods, rule=Max_Bat_out) #minimun flow of energy for the discharge fase
   
    #Diesel Generator constraints
    model.GeneratorBoundsMin = Constraint(model.periods, rule=Generator_Bounds_Min_Integer) 
    model.GeneratorBoundsMax = Constraint(model.periods, rule=Generator_Bounds_Max_Integer)
    model.GeneratorCost1 = Constraint(model.periods,  rule=Generator_Cost_1_Integer)
    model.EnergyGenaratorEnergyMax = Constraint(model.periods, rule=Energy_Genarator_Energy_Max_Integer)
    model.TotalCostGenerator = Constraint(rule=Total_Cost_Generator_Integer)
    
    # Financial Constraints
    model.ScenarioLostLoadCost = Constraint(rule=Scenario_Lost_Load_Cost)
    
    instance = model.create_instance("Example/data_dispatch.dat") # load parameters       
    opt = SolverFactory('cplex') # Solver use during the optimization    
#    opt.options['emphasis_memory'] = 'y'
#    opt.options['node_select'] = 3
    results = opt.solve(instance, tee=True,options_string="mipgap=0.03") # Solving a model instance 

    #    instance.write(io_options={'emphasis_memory':True})
    #options_string="mipgap=0.03", timelimit=1200
    instance.solutions.load_from(results) # Loading solution into instance
    return instance